1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
//! x86 run-time feature detection is OS independent.
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
use core::mem;
use crate::detect::{bit, cache, Feature};
/// Run-time feature detection on x86 works by using the CPUID instruction.
///
/// The [CPUID Wikipedia page][wiki_cpuid] contains
/// all the information about which flags to set to query which values, and in
/// which registers these are reported.
///
/// The definitive references are:
/// - [Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2:
/// Instruction Set Reference, A-Z][intel64_ref].
/// - [AMD64 Architecture Programmer's Manual, Volume 3: General-Purpose and
/// System Instructions][amd64_ref].
///
/// [wiki_cpuid]: https://en.wikipedia.org/wiki/CPUID
/// [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
/// [amd64_ref]: http://support.amd.com/TechDocs/24594.pdf
#[allow(clippy::similar_names)]
pub(crate) fn detect_features() -> cache::Initializer {
let mut value = cache::Initializer::default();
// If the x86 CPU does not support the CPUID instruction then it is too
// old to support any of the currently-detectable features.
if !has_cpuid() {
return value;
}
// Calling `__cpuid`/`__cpuid_count` from here on is safe because the CPU
// has `cpuid` support.
// 0. EAX = 0: Basic Information:
// - EAX returns the "Highest Function Parameter", that is, the maximum
// leaf value for subsequent calls of `cpuinfo` in range [0,
// 0x8000_0000]. - The vendor ID is stored in 12 u8 ascii chars,
// returned in EBX, EDX, and ECX (in that order):
let (max_basic_leaf, vendor_id) = unsafe {
let CpuidResult {
eax: max_basic_leaf,
ebx,
ecx,
edx,
} = __cpuid(0);
let vendor_id: [[u8; 4]; 3] = [
mem::transmute(ebx),
mem::transmute(edx),
mem::transmute(ecx),
];
let vendor_id: [u8; 12] = mem::transmute(vendor_id);
(max_basic_leaf, vendor_id)
};
if max_basic_leaf < 1 {
// Earlier Intel 486, CPUID not implemented
return value;
}
// EAX = 1, ECX = 0: Queries "Processor Info and Feature Bits";
// Contains information about most x86 features.
let CpuidResult {
ecx: proc_info_ecx,
edx: proc_info_edx,
..
} = unsafe { __cpuid(0x0000_0001_u32) };
// EAX = 7, ECX = 0: Queries "Extended Features";
// Contains information about bmi,bmi2, and avx2 support.
let (extended_features_ebx, extended_features_ecx) = if max_basic_leaf >= 7 {
let CpuidResult { ebx, ecx, .. } = unsafe { __cpuid(0x0000_0007_u32) };
(ebx, ecx)
} else {
(0, 0) // CPUID does not support "Extended Features"
};
// EAX = 0x8000_0000, ECX = 0: Get Highest Extended Function Supported
// - EAX returns the max leaf value for extended information, that is,
// `cpuid` calls in range [0x8000_0000; u32::MAX]:
let CpuidResult {
eax: extended_max_basic_leaf,
..
} = unsafe { __cpuid(0x8000_0000_u32) };
// EAX = 0x8000_0001, ECX=0: Queries "Extended Processor Info and Feature
// Bits"
let extended_proc_info_ecx = if extended_max_basic_leaf >= 1 {
let CpuidResult { ecx, .. } = unsafe { __cpuid(0x8000_0001_u32) };
ecx
} else {
0
};
{
// borrows value till the end of this scope:
let mut enable = |r, rb, f| {
if bit::test(r as usize, rb) {
value.set(f as u32);
}
};
enable(proc_info_ecx, 0, Feature::sse3);
enable(proc_info_ecx, 1, Feature::pclmulqdq);
enable(proc_info_ecx, 9, Feature::ssse3);
enable(proc_info_ecx, 13, Feature::cmpxchg16b);
enable(proc_info_ecx, 19, Feature::sse4_1);
enable(proc_info_ecx, 20, Feature::sse4_2);
enable(proc_info_ecx, 22, Feature::movbe);
enable(proc_info_ecx, 23, Feature::popcnt);
enable(proc_info_ecx, 25, Feature::aes);
enable(proc_info_ecx, 29, Feature::f16c);
enable(proc_info_ecx, 30, Feature::rdrand);
enable(extended_features_ebx, 18, Feature::rdseed);
enable(extended_features_ebx, 19, Feature::adx);
enable(extended_features_ebx, 11, Feature::rtm);
enable(proc_info_edx, 4, Feature::tsc);
enable(proc_info_edx, 23, Feature::mmx);
enable(proc_info_edx, 24, Feature::fxsr);
enable(proc_info_edx, 25, Feature::sse);
enable(proc_info_edx, 26, Feature::sse2);
enable(extended_features_ebx, 29, Feature::sha);
enable(extended_features_ebx, 3, Feature::bmi1);
enable(extended_features_ebx, 8, Feature::bmi2);
enable(extended_features_ebx, 9, Feature::ermsb);
// `XSAVE` and `AVX` support:
let cpu_xsave = bit::test(proc_info_ecx as usize, 26);
if cpu_xsave {
// 0. Here the CPU supports `XSAVE`.
// 1. Detect `OSXSAVE`, that is, whether the OS is AVX enabled and
// supports saving the state of the AVX/AVX2 vector registers on
// context-switches, see:
//
// - [intel: is avx enabled?][is_avx_enabled],
// - [mozilla: sse.cpp][mozilla_sse_cpp].
//
// [is_avx_enabled]: https://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
// [mozilla_sse_cpp]: https://hg.mozilla.org/mozilla-central/file/64bab5cbb9b6/mozglue/build/SSE.cpp#l190
let cpu_osxsave = bit::test(proc_info_ecx as usize, 27);
if cpu_osxsave {
// 2. The OS must have signaled the CPU that it supports saving and
// restoring the:
//
// * SSE -> `XCR0.SSE[1]`
// * AVX -> `XCR0.AVX[2]`
// * AVX-512 -> `XCR0.AVX-512[7:5]`.
//
// by setting the corresponding bits of `XCR0` to `1`.
//
// This is safe because the CPU supports `xsave`
// and the OS has set `osxsave`.
let xcr0 = unsafe { _xgetbv(0) };
// Test `XCR0.SSE[1]` and `XCR0.AVX[2]` with the mask `0b110 == 6`:
let os_avx_support = xcr0 & 6 == 6;
// Test `XCR0.AVX-512[7:5]` with the mask `0b1110_0000 == 224`:
let os_avx512_support = xcr0 & 224 == 224;
// Only if the OS and the CPU support saving/restoring the AVX
// registers we enable `xsave` support:
if os_avx_support {
// See "13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED
// FEATURES" in the "Intel® 64 and IA-32 Architectures Software
// Developer’s Manual, Volume 1: Basic Architecture":
//
// "Software enables the XSAVE feature set by setting
// CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4
// instruction). If this bit is 0, execution of any of XGETBV,
// XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV
// causes an invalid-opcode exception (#UD)"
//
enable(proc_info_ecx, 26, Feature::xsave);
// For `xsaveopt`, `xsavec`, and `xsaves` we need to query:
// Processor Extended State Enumeration Sub-leaf (EAX = 0DH,
// ECX = 1):
if max_basic_leaf >= 0xd {
let CpuidResult {
eax: proc_extended_state1_eax,
..
} = unsafe { __cpuid_count(0xd_u32, 1) };
enable(proc_extended_state1_eax, 0, Feature::xsaveopt);
enable(proc_extended_state1_eax, 1, Feature::xsavec);
enable(proc_extended_state1_eax, 3, Feature::xsaves);
}
// FMA (uses 256-bit wide registers):
enable(proc_info_ecx, 12, Feature::fma);
// And AVX/AVX2:
enable(proc_info_ecx, 28, Feature::avx);
enable(extended_features_ebx, 5, Feature::avx2);
// For AVX-512 the OS also needs to support saving/restoring
// the extended state, only then we enable AVX-512 support:
if os_avx512_support {
enable(extended_features_ebx, 16, Feature::avx512f);
enable(extended_features_ebx, 17, Feature::avx512dq);
enable(extended_features_ebx, 21, Feature::avx512ifma);
enable(extended_features_ebx, 26, Feature::avx512pf);
enable(extended_features_ebx, 27, Feature::avx512er);
enable(extended_features_ebx, 28, Feature::avx512cd);
enable(extended_features_ebx, 30, Feature::avx512bw);
enable(extended_features_ebx, 31, Feature::avx512vl);
enable(extended_features_ecx, 1, Feature::avx512vbmi);
enable(extended_features_ecx, 5, Feature::avx512bf16);
enable(extended_features_ecx, 6, Feature::avx512vbmi2);
enable(extended_features_ecx, 8, Feature::gfni);
enable(extended_features_ecx, 8, Feature::avx512vp2intersect);
enable(extended_features_ecx, 9, Feature::vaes);
enable(extended_features_ecx, 10, Feature::vpclmulqdq);
enable(extended_features_ecx, 11, Feature::avx512vnni);
enable(extended_features_ecx, 12, Feature::avx512bitalg);
enable(extended_features_ecx, 14, Feature::avx512vpopcntdq);
}
}
}
}
// This detects ABM on AMD CPUs and LZCNT on Intel CPUs.
// On intel CPUs with popcnt, lzcnt implements the
// "missing part" of ABM, so we map both to the same
// internal feature.
//
// The `is_x86_feature_detected!("lzcnt")` macro then
// internally maps to Feature::abm.
enable(extended_proc_info_ecx, 5, Feature::lzcnt);
// As Hygon Dhyana originates from AMD technology and shares most of the architecture with
// AMD's family 17h, but with different CPU Vendor ID("HygonGenuine")/Family series
// number(Family 18h).
//
// For CPUID feature bits, Hygon Dhyana(family 18h) share the same definition with AMD
// family 17h.
//
// Related AMD CPUID specification is https://www.amd.com/system/files/TechDocs/25481.pdf.
// Related Hygon kernel patch can be found on
// http://lkml.kernel.org/r/5ce86123a7b9dad925ac583d88d2f921040e859b.1538583282.git.puwen@hygon.cn
if vendor_id == *b"AuthenticAMD" || vendor_id == *b"HygonGenuine" {
// These features are available on AMD arch CPUs:
enable(extended_proc_info_ecx, 6, Feature::sse4a);
enable(extended_proc_info_ecx, 21, Feature::tbm);
}
}
// Unfortunately, some Skylake chips erroneously report support for BMI1 and
// BMI2 without actual support. These chips don't support AVX, and it seems
// that all Intel chips with non-erroneous support BMI do (I didn't check
// other vendors), so we can disable these flags for chips that don't also
// report support for AVX.
//
// It's possible this will pessimize future chips that do support BMI and
// not AVX, but this seems minor compared to a hard crash you get when
// executing an unsupported instruction (to put it another way, it's safe
// for us to under-report CPU features, but not to over-report them). Still,
// to limit any impact this may have in the future, we only do this for
// Intel chips, as it's a bug only present in their chips.
//
// This bug is documented as `SKL052` in the errata section of this document:
// http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/desktop-6th-gen-core-family-spec-update.pdf
if vendor_id == *b"GenuineIntel" && !value.test(Feature::avx as u32) {
value.unset(Feature::bmi1 as u32);
value.unset(Feature::bmi2 as u32);
}
value
}