1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
//! Caches run-time feature detection so that it only needs to be computed
//! once.
#![allow(dead_code)] // not used on all platforms
use core::sync::atomic::Ordering;
use core::sync::atomic::AtomicUsize;
/// Sets the `bit` of `x`.
#[inline]
const fn set_bit(x: u64, bit: u32) -> u64 {
x | 1 << bit
}
/// Tests the `bit` of `x`.
#[inline]
const fn test_bit(x: u64, bit: u32) -> bool {
x & (1 << bit) != 0
}
/// Unset the `bit of `x`.
#[inline]
const fn unset_bit(x: u64, bit: u32) -> u64 {
x & !(1 << bit)
}
/// Maximum number of features that can be cached.
const CACHE_CAPACITY: u32 = 62;
/// This type is used to initialize the cache
#[derive(Copy, Clone)]
pub(crate) struct Initializer(u64);
#[allow(clippy::use_self)]
impl Default for Initializer {
fn default() -> Self {
Initializer(0)
}
}
// NOTE: the `debug_assert!` would catch that we do not add more Features than
// the one fitting our cache.
impl Initializer {
/// Tests the `bit` of the cache.
#[inline]
pub(crate) fn test(self, bit: u32) -> bool {
debug_assert!(
bit < CACHE_CAPACITY,
"too many features, time to increase the cache size!"
);
test_bit(self.0, bit)
}
/// Sets the `bit` of the cache.
#[inline]
pub(crate) fn set(&mut self, bit: u32) {
debug_assert!(
bit < CACHE_CAPACITY,
"too many features, time to increase the cache size!"
);
let v = self.0;
self.0 = set_bit(v, bit);
}
/// Unsets the `bit` of the cache.
#[inline]
pub(crate) fn unset(&mut self, bit: u32) {
debug_assert!(
bit < CACHE_CAPACITY,
"too many features, time to increase the cache size!"
);
let v = self.0;
self.0 = unset_bit(v, bit);
}
}
/// This global variable is a cache of the features supported by the CPU.
// Note: on x64, we only use the first slot
static CACHE: [Cache; 2] = [Cache::uninitialized(), Cache::uninitialized()];
/// Feature cache with capacity for `size_of::<usize::MAX>() * 8 - 1` features.
///
/// Note: 0 is used to represent an uninitialized cache, and (at least) the most
/// significant bit is set on any cache which has been initialized.
///
/// Note: we use `Relaxed` atomic operations, because we are only interested in
/// the effects of operations on a single memory location. That is, we only need
/// "modification order", and not the full-blown "happens before".
struct Cache(AtomicUsize);
impl Cache {
const CAPACITY: u32 = (core::mem::size_of::<usize>() * 8 - 1) as u32;
const MASK: usize = (1 << Cache::CAPACITY) - 1;
const INITIALIZED_BIT: usize = 1usize << Cache::CAPACITY;
/// Creates an uninitialized cache.
#[allow(clippy::declare_interior_mutable_const)]
const fn uninitialized() -> Self {
Cache(AtomicUsize::new(0))
}
/// Is the `bit` in the cache set? Returns `None` if the cache has not been initialized.
#[inline]
pub(crate) fn test(&self, bit: u32) -> Option<bool> {
let cached = self.0.load(Ordering::Relaxed);
if cached == 0 {
None
} else {
Some(test_bit(cached as u64, bit))
}
}
/// Initializes the cache.
#[inline]
fn initialize(&self, value: usize) -> usize {
debug_assert_eq!((value & !Cache::MASK), 0);
self.0
.store(value | Cache::INITIALIZED_BIT, Ordering::Relaxed);
value
}
}
cfg_if::cfg_if! {
if #[cfg(feature = "std_detect_env_override")] {
#[inline]
fn initialize(mut value: Initializer) -> Initializer {
let env = unsafe {
libc::getenv(b"RUST_STD_DETECT_UNSTABLE\0".as_ptr() as *const libc::c_char)
};
if !env.is_null() {
let len = unsafe { libc::strlen(env) };
let env = unsafe { core::slice::from_raw_parts(env as *const u8, len) };
if let Ok(disable) = core::str::from_utf8(env) {
for v in disable.split(" ") {
let _ = super::Feature::from_str(v).map(|v| value.unset(v as u32));
}
}
}
do_initialize(value);
value
}
} else {
#[inline]
fn initialize(value: Initializer) -> Initializer {
do_initialize(value);
value
}
}
}
#[inline]
fn do_initialize(value: Initializer) {
CACHE[0].initialize((value.0) as usize & Cache::MASK);
CACHE[1].initialize((value.0 >> Cache::CAPACITY) as usize & Cache::MASK);
}
// We only have to detect features once, and it's fairly costly, so hint to LLVM
// that it should assume that cache hits are more common than misses (which is
// the point of caching). It's possibly unfortunate that this function needs to
// reach across modules like this to call `os::detect_features`, but it produces
// the best code out of several attempted variants.
//
// The `Initializer` that the cache was initialized with is returned, so that
// the caller can call `test()` on it without having to load the value from the
// cache again.
#[cold]
fn detect_and_initialize() -> Initializer {
initialize(super::os::detect_features())
}
/// Tests the `bit` of the storage. If the storage has not been initialized,
/// initializes it with the result of `os::detect_features()`.
///
/// On its first invocation, it detects the CPU features and caches them in the
/// `CACHE` global variable as an `AtomicU64`.
///
/// It uses the `Feature` variant to index into this variable as a bitset. If
/// the bit is set, the feature is enabled, and otherwise it is disabled.
///
/// If the feature `std_detect_env_override` is enabled looks for the env
/// variable `RUST_STD_DETECT_UNSTABLE` and uses its content to disable
/// Features that would had been otherwise detected.
#[inline]
pub(crate) fn test(bit: u32) -> bool {
let (relative_bit, idx) = if bit < Cache::CAPACITY {
(bit, 0)
} else {
(bit - Cache::CAPACITY, 1)
};
CACHE[idx]
.test(relative_bit)
.unwrap_or_else(|| detect_and_initialize().test(bit))
}