1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
use core::ops;
mod specialized_div_rem;
pub mod addsub;
pub mod leading_zeros;
pub mod mul;
pub mod sdiv;
pub mod shift;
pub mod udiv;
pub use self::leading_zeros::__clzsi2;
public_test_dep! {
/// Trait for some basic operations on integers
pub(crate) trait Int:
Copy
+ core::fmt::Debug
+ PartialEq
+ PartialOrd
+ ops::AddAssign
+ ops::SubAssign
+ ops::BitAndAssign
+ ops::BitOrAssign
+ ops::BitXorAssign
+ ops::ShlAssign<i32>
+ ops::ShrAssign<u32>
+ ops::Add<Output = Self>
+ ops::Sub<Output = Self>
+ ops::Div<Output = Self>
+ ops::Shl<u32, Output = Self>
+ ops::Shr<u32, Output = Self>
+ ops::BitOr<Output = Self>
+ ops::BitXor<Output = Self>
+ ops::BitAnd<Output = Self>
+ ops::Not<Output = Self>
{
/// Type with the same width but other signedness
type OtherSign: Int;
/// Unsigned version of Self
type UnsignedInt: Int;
/// If `Self` is a signed integer
const SIGNED: bool;
/// The bitwidth of the int type
const BITS: u32;
const ZERO: Self;
const ONE: Self;
const MIN: Self;
const MAX: Self;
/// LUT used for maximizing the space covered and minimizing the computational cost of fuzzing
/// in `testcrate`. For example, Self = u128 produces [0,1,2,7,8,15,16,31,32,63,64,95,96,111,
/// 112,119,120,125,126,127].
const FUZZ_LENGTHS: [u8; 20];
/// The number of entries of `FUZZ_LENGTHS` actually used. The maximum is 20 for u128.
const FUZZ_NUM: usize;
fn unsigned(self) -> Self::UnsignedInt;
fn from_unsigned(unsigned: Self::UnsignedInt) -> Self;
fn from_bool(b: bool) -> Self;
/// Prevents the need for excessive conversions between signed and unsigned
fn logical_shr(self, other: u32) -> Self;
/// Absolute difference between two integers.
fn abs_diff(self, other: Self) -> Self::UnsignedInt;
// copied from primitive integers, but put in a trait
fn is_zero(self) -> bool;
fn wrapping_neg(self) -> Self;
fn wrapping_add(self, other: Self) -> Self;
fn wrapping_mul(self, other: Self) -> Self;
fn wrapping_sub(self, other: Self) -> Self;
fn wrapping_shl(self, other: u32) -> Self;
fn wrapping_shr(self, other: u32) -> Self;
fn rotate_left(self, other: u32) -> Self;
fn overflowing_add(self, other: Self) -> (Self, bool);
fn leading_zeros(self) -> u32;
}
}
macro_rules! int_impl_common {
($ty:ty) => {
const BITS: u32 = <Self as Int>::ZERO.count_zeros();
const SIGNED: bool = Self::MIN != Self::ZERO;
const ZERO: Self = 0;
const ONE: Self = 1;
const MIN: Self = <Self>::MIN;
const MAX: Self = <Self>::MAX;
const FUZZ_LENGTHS: [u8; 20] = {
let bits = <Self as Int>::BITS;
let mut v = [0u8; 20];
v[0] = 0;
v[1] = 1;
v[2] = 2; // important for parity and the iX::MIN case when reversed
let mut i = 3;
// No need for any more until the byte boundary, because there should be no algorithms
// that are sensitive to anything not next to byte boundaries after 2. We also scale
// in powers of two, which is important to prevent u128 corner tests from getting too
// big.
let mut l = 8;
loop {
if l >= ((bits / 2) as u8) {
break;
}
// get both sides of the byte boundary
v[i] = l - 1;
i += 1;
v[i] = l;
i += 1;
l *= 2;
}
if bits != 8 {
// add the lower side of the middle boundary
v[i] = ((bits / 2) - 1) as u8;
i += 1;
}
// We do not want to jump directly from the Self::BITS/2 boundary to the Self::BITS
// boundary because of algorithms that split the high part up. We reverse the scaling
// as we go to Self::BITS.
let mid = i;
let mut j = 1;
loop {
v[i] = (bits as u8) - (v[mid - j]) - 1;
if j == mid {
break;
}
i += 1;
j += 1;
}
v
};
const FUZZ_NUM: usize = {
let log2 = (<Self as Int>::BITS - 1).count_ones() as usize;
if log2 == 3 {
// case for u8
6
} else {
// 3 entries on each extreme, 2 in the middle, and 4 for each scale of intermediate
// boundaries.
8 + (4 * (log2 - 4))
}
};
fn from_bool(b: bool) -> Self {
b as $ty
}
fn logical_shr(self, other: u32) -> Self {
Self::from_unsigned(self.unsigned().wrapping_shr(other))
}
fn is_zero(self) -> bool {
self == Self::ZERO
}
fn wrapping_neg(self) -> Self {
<Self>::wrapping_neg(self)
}
fn wrapping_add(self, other: Self) -> Self {
<Self>::wrapping_add(self, other)
}
fn wrapping_mul(self, other: Self) -> Self {
<Self>::wrapping_mul(self, other)
}
fn wrapping_sub(self, other: Self) -> Self {
<Self>::wrapping_sub(self, other)
}
fn wrapping_shl(self, other: u32) -> Self {
<Self>::wrapping_shl(self, other)
}
fn wrapping_shr(self, other: u32) -> Self {
<Self>::wrapping_shr(self, other)
}
fn rotate_left(self, other: u32) -> Self {
<Self>::rotate_left(self, other)
}
fn overflowing_add(self, other: Self) -> (Self, bool) {
<Self>::overflowing_add(self, other)
}
fn leading_zeros(self) -> u32 {
<Self>::leading_zeros(self)
}
};
}
macro_rules! int_impl {
($ity:ty, $uty:ty) => {
impl Int for $uty {
type OtherSign = $ity;
type UnsignedInt = $uty;
fn unsigned(self) -> $uty {
self
}
// It makes writing macros easier if this is implemented for both signed and unsigned
#[allow(clippy::wrong_self_convention)]
fn from_unsigned(me: $uty) -> Self {
me
}
fn abs_diff(self, other: Self) -> Self {
if self < other {
other.wrapping_sub(self)
} else {
self.wrapping_sub(other)
}
}
int_impl_common!($uty);
}
impl Int for $ity {
type OtherSign = $uty;
type UnsignedInt = $uty;
fn unsigned(self) -> $uty {
self as $uty
}
fn from_unsigned(me: $uty) -> Self {
me as $ity
}
fn abs_diff(self, other: Self) -> $uty {
self.wrapping_sub(other).wrapping_abs() as $uty
}
int_impl_common!($ity);
}
};
}
int_impl!(isize, usize);
int_impl!(i8, u8);
int_impl!(i16, u16);
int_impl!(i32, u32);
int_impl!(i64, u64);
int_impl!(i128, u128);
public_test_dep! {
/// Trait for integers twice the bit width of another integer. This is implemented for all
/// primitives except for `u8`, because there is not a smaller primitive.
pub(crate) trait DInt: Int {
/// Integer that is half the bit width of the integer this trait is implemented for
type H: HInt<D = Self> + Int;
/// Returns the low half of `self`
fn lo(self) -> Self::H;
/// Returns the high half of `self`
fn hi(self) -> Self::H;
/// Returns the low and high halves of `self` as a tuple
fn lo_hi(self) -> (Self::H, Self::H);
/// Constructs an integer using lower and higher half parts
fn from_lo_hi(lo: Self::H, hi: Self::H) -> Self;
}
}
public_test_dep! {
/// Trait for integers half the bit width of another integer. This is implemented for all
/// primitives except for `u128`, because it there is not a larger primitive.
pub(crate) trait HInt: Int {
/// Integer that is double the bit width of the integer this trait is implemented for
type D: DInt<H = Self> + Int;
/// Widens (using default extension) the integer to have double bit width
fn widen(self) -> Self::D;
/// Widens (zero extension only) the integer to have double bit width. This is needed to get
/// around problems with associated type bounds (such as `Int<Othersign: DInt>`) being unstable
fn zero_widen(self) -> Self::D;
/// Widens the integer to have double bit width and shifts the integer into the higher bits
fn widen_hi(self) -> Self::D;
/// Widening multiplication with zero widening. This cannot overflow.
fn zero_widen_mul(self, rhs: Self) -> Self::D;
/// Widening multiplication. This cannot overflow.
fn widen_mul(self, rhs: Self) -> Self::D;
}
}
macro_rules! impl_d_int {
($($X:ident $D:ident),*) => {
$(
impl DInt for $D {
type H = $X;
fn lo(self) -> Self::H {
self as $X
}
fn hi(self) -> Self::H {
(self >> <$X as Int>::BITS) as $X
}
fn lo_hi(self) -> (Self::H, Self::H) {
(self.lo(), self.hi())
}
fn from_lo_hi(lo: Self::H, hi: Self::H) -> Self {
lo.zero_widen() | hi.widen_hi()
}
}
)*
};
}
macro_rules! impl_h_int {
($($H:ident $uH:ident $X:ident),*) => {
$(
impl HInt for $H {
type D = $X;
fn widen(self) -> Self::D {
self as $X
}
fn zero_widen(self) -> Self::D {
(self as $uH) as $X
}
fn widen_hi(self) -> Self::D {
(self as $X) << <$H as Int>::BITS
}
fn zero_widen_mul(self, rhs: Self) -> Self::D {
self.zero_widen().wrapping_mul(rhs.zero_widen())
}
fn widen_mul(self, rhs: Self) -> Self::D {
self.widen().wrapping_mul(rhs.widen())
}
}
)*
};
}
impl_d_int!(u8 u16, u16 u32, u32 u64, u64 u128, i8 i16, i16 i32, i32 i64, i64 i128);
impl_h_int!(
u8 u8 u16,
u16 u16 u32,
u32 u32 u64,
u64 u64 u128,
i8 u8 i16,
i16 u16 i32,
i32 u32 i64,
i64 u64 i128
);
public_test_dep! {
/// Trait to express (possibly lossy) casting of integers
pub(crate) trait CastInto<T: Copy>: Copy {
fn cast(self) -> T;
}
}
macro_rules! cast_into {
($ty:ty) => {
cast_into!($ty; usize, isize, u8, i8, u16, i16, u32, i32, u64, i64, u128, i128);
};
($ty:ty; $($into:ty),*) => {$(
impl CastInto<$into> for $ty {
fn cast(self) -> $into {
self as $into
}
}
)*};
}
cast_into!(usize);
cast_into!(isize);
cast_into!(u8);
cast_into!(i8);
cast_into!(u16);
cast_into!(i16);
cast_into!(u32);
cast_into!(i32);
cast_into!(u64);
cast_into!(i64);
cast_into!(u128);
cast_into!(i128);