1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
use core::ops;

mod specialized_div_rem;

pub mod addsub;
pub mod leading_zeros;
pub mod mul;
pub mod sdiv;
pub mod shift;
pub mod udiv;

pub use self::leading_zeros::__clzsi2;

public_test_dep! {
/// Trait for some basic operations on integers
pub(crate) trait Int:
    Copy
    + core::fmt::Debug
    + PartialEq
    + PartialOrd
    + ops::AddAssign
    + ops::SubAssign
    + ops::BitAndAssign
    + ops::BitOrAssign
    + ops::BitXorAssign
    + ops::ShlAssign<i32>
    + ops::ShrAssign<u32>
    + ops::Add<Output = Self>
    + ops::Sub<Output = Self>
    + ops::Div<Output = Self>
    + ops::Shl<u32, Output = Self>
    + ops::Shr<u32, Output = Self>
    + ops::BitOr<Output = Self>
    + ops::BitXor<Output = Self>
    + ops::BitAnd<Output = Self>
    + ops::Not<Output = Self>
{
    /// Type with the same width but other signedness
    type OtherSign: Int;
    /// Unsigned version of Self
    type UnsignedInt: Int;

    /// If `Self` is a signed integer
    const SIGNED: bool;

    /// The bitwidth of the int type
    const BITS: u32;

    const ZERO: Self;
    const ONE: Self;
    const MIN: Self;
    const MAX: Self;

    /// LUT used for maximizing the space covered and minimizing the computational cost of fuzzing
    /// in `testcrate`. For example, Self = u128 produces [0,1,2,7,8,15,16,31,32,63,64,95,96,111,
    /// 112,119,120,125,126,127].
    const FUZZ_LENGTHS: [u8; 20];
    /// The number of entries of `FUZZ_LENGTHS` actually used. The maximum is 20 for u128.
    const FUZZ_NUM: usize;

    fn unsigned(self) -> Self::UnsignedInt;
    fn from_unsigned(unsigned: Self::UnsignedInt) -> Self;

    fn from_bool(b: bool) -> Self;

    /// Prevents the need for excessive conversions between signed and unsigned
    fn logical_shr(self, other: u32) -> Self;

    /// Absolute difference between two integers.
    fn abs_diff(self, other: Self) -> Self::UnsignedInt;

    // copied from primitive integers, but put in a trait
    fn is_zero(self) -> bool;
    fn wrapping_neg(self) -> Self;
    fn wrapping_add(self, other: Self) -> Self;
    fn wrapping_mul(self, other: Self) -> Self;
    fn wrapping_sub(self, other: Self) -> Self;
    fn wrapping_shl(self, other: u32) -> Self;
    fn wrapping_shr(self, other: u32) -> Self;
    fn rotate_left(self, other: u32) -> Self;
    fn overflowing_add(self, other: Self) -> (Self, bool);
    fn leading_zeros(self) -> u32;
}
}

macro_rules! int_impl_common {
    ($ty:ty) => {
        const BITS: u32 = <Self as Int>::ZERO.count_zeros();
        const SIGNED: bool = Self::MIN != Self::ZERO;

        const ZERO: Self = 0;
        const ONE: Self = 1;
        const MIN: Self = <Self>::MIN;
        const MAX: Self = <Self>::MAX;

        const FUZZ_LENGTHS: [u8; 20] = {
            let bits = <Self as Int>::BITS;
            let mut v = [0u8; 20];
            v[0] = 0;
            v[1] = 1;
            v[2] = 2; // important for parity and the iX::MIN case when reversed
            let mut i = 3;
            // No need for any more until the byte boundary, because there should be no algorithms
            // that are sensitive to anything not next to byte boundaries after 2. We also scale
            // in powers of two, which is important to prevent u128 corner tests from getting too
            // big.
            let mut l = 8;
            loop {
                if l >= ((bits / 2) as u8) {
                    break;
                }
                // get both sides of the byte boundary
                v[i] = l - 1;
                i += 1;
                v[i] = l;
                i += 1;
                l *= 2;
            }

            if bits != 8 {
                // add the lower side of the middle boundary
                v[i] = ((bits / 2) - 1) as u8;
                i += 1;
            }

            // We do not want to jump directly from the Self::BITS/2 boundary to the Self::BITS
            // boundary because of algorithms that split the high part up. We reverse the scaling
            // as we go to Self::BITS.
            let mid = i;
            let mut j = 1;
            loop {
                v[i] = (bits as u8) - (v[mid - j]) - 1;
                if j == mid {
                    break;
                }
                i += 1;
                j += 1;
            }
            v
        };

        const FUZZ_NUM: usize = {
            let log2 = (<Self as Int>::BITS - 1).count_ones() as usize;
            if log2 == 3 {
                // case for u8
                6
            } else {
                // 3 entries on each extreme, 2 in the middle, and 4 for each scale of intermediate
                // boundaries.
                8 + (4 * (log2 - 4))
            }
        };

        fn from_bool(b: bool) -> Self {
            b as $ty
        }

        fn logical_shr(self, other: u32) -> Self {
            Self::from_unsigned(self.unsigned().wrapping_shr(other))
        }

        fn is_zero(self) -> bool {
            self == Self::ZERO
        }

        fn wrapping_neg(self) -> Self {
            <Self>::wrapping_neg(self)
        }

        fn wrapping_add(self, other: Self) -> Self {
            <Self>::wrapping_add(self, other)
        }

        fn wrapping_mul(self, other: Self) -> Self {
            <Self>::wrapping_mul(self, other)
        }

        fn wrapping_sub(self, other: Self) -> Self {
            <Self>::wrapping_sub(self, other)
        }

        fn wrapping_shl(self, other: u32) -> Self {
            <Self>::wrapping_shl(self, other)
        }

        fn wrapping_shr(self, other: u32) -> Self {
            <Self>::wrapping_shr(self, other)
        }

        fn rotate_left(self, other: u32) -> Self {
            <Self>::rotate_left(self, other)
        }

        fn overflowing_add(self, other: Self) -> (Self, bool) {
            <Self>::overflowing_add(self, other)
        }

        fn leading_zeros(self) -> u32 {
            <Self>::leading_zeros(self)
        }
    };
}

macro_rules! int_impl {
    ($ity:ty, $uty:ty) => {
        impl Int for $uty {
            type OtherSign = $ity;
            type UnsignedInt = $uty;

            fn unsigned(self) -> $uty {
                self
            }

            // It makes writing macros easier if this is implemented for both signed and unsigned
            #[allow(clippy::wrong_self_convention)]
            fn from_unsigned(me: $uty) -> Self {
                me
            }

            fn abs_diff(self, other: Self) -> Self {
                if self < other {
                    other.wrapping_sub(self)
                } else {
                    self.wrapping_sub(other)
                }
            }

            int_impl_common!($uty);
        }

        impl Int for $ity {
            type OtherSign = $uty;
            type UnsignedInt = $uty;

            fn unsigned(self) -> $uty {
                self as $uty
            }

            fn from_unsigned(me: $uty) -> Self {
                me as $ity
            }

            fn abs_diff(self, other: Self) -> $uty {
                self.wrapping_sub(other).wrapping_abs() as $uty
            }

            int_impl_common!($ity);
        }
    };
}

int_impl!(isize, usize);
int_impl!(i8, u8);
int_impl!(i16, u16);
int_impl!(i32, u32);
int_impl!(i64, u64);
int_impl!(i128, u128);

public_test_dep! {
/// Trait for integers twice the bit width of another integer. This is implemented for all
/// primitives except for `u8`, because there is not a smaller primitive.
pub(crate) trait DInt: Int {
    /// Integer that is half the bit width of the integer this trait is implemented for
    type H: HInt<D = Self> + Int;

    /// Returns the low half of `self`
    fn lo(self) -> Self::H;
    /// Returns the high half of `self`
    fn hi(self) -> Self::H;
    /// Returns the low and high halves of `self` as a tuple
    fn lo_hi(self) -> (Self::H, Self::H);
    /// Constructs an integer using lower and higher half parts
    fn from_lo_hi(lo: Self::H, hi: Self::H) -> Self;
}
}

public_test_dep! {
/// Trait for integers half the bit width of another integer. This is implemented for all
/// primitives except for `u128`, because it there is not a larger primitive.
pub(crate) trait HInt: Int {
    /// Integer that is double the bit width of the integer this trait is implemented for
    type D: DInt<H = Self> + Int;

    /// Widens (using default extension) the integer to have double bit width
    fn widen(self) -> Self::D;
    /// Widens (zero extension only) the integer to have double bit width. This is needed to get
    /// around problems with associated type bounds (such as `Int<Othersign: DInt>`) being unstable
    fn zero_widen(self) -> Self::D;
    /// Widens the integer to have double bit width and shifts the integer into the higher bits
    fn widen_hi(self) -> Self::D;
    /// Widening multiplication with zero widening. This cannot overflow.
    fn zero_widen_mul(self, rhs: Self) -> Self::D;
    /// Widening multiplication. This cannot overflow.
    fn widen_mul(self, rhs: Self) -> Self::D;
}
}

macro_rules! impl_d_int {
    ($($X:ident $D:ident),*) => {
        $(
            impl DInt for $D {
                type H = $X;

                fn lo(self) -> Self::H {
                    self as $X
                }
                fn hi(self) -> Self::H {
                    (self >> <$X as Int>::BITS) as $X
                }
                fn lo_hi(self) -> (Self::H, Self::H) {
                    (self.lo(), self.hi())
                }
                fn from_lo_hi(lo: Self::H, hi: Self::H) -> Self {
                    lo.zero_widen() | hi.widen_hi()
                }
            }
        )*
    };
}

macro_rules! impl_h_int {
    ($($H:ident $uH:ident $X:ident),*) => {
        $(
            impl HInt for $H {
                type D = $X;

                fn widen(self) -> Self::D {
                    self as $X
                }
                fn zero_widen(self) -> Self::D {
                    (self as $uH) as $X
                }
                fn widen_hi(self) -> Self::D {
                    (self as $X) << <$H as Int>::BITS
                }
                fn zero_widen_mul(self, rhs: Self) -> Self::D {
                    self.zero_widen().wrapping_mul(rhs.zero_widen())
                }
                fn widen_mul(self, rhs: Self) -> Self::D {
                    self.widen().wrapping_mul(rhs.widen())
                }
            }
        )*
    };
}

impl_d_int!(u8 u16, u16 u32, u32 u64, u64 u128, i8 i16, i16 i32, i32 i64, i64 i128);
impl_h_int!(
    u8 u8 u16,
    u16 u16 u32,
    u32 u32 u64,
    u64 u64 u128,
    i8 u8 i16,
    i16 u16 i32,
    i32 u32 i64,
    i64 u64 i128
);

public_test_dep! {
/// Trait to express (possibly lossy) casting of integers
pub(crate) trait CastInto<T: Copy>: Copy {
    fn cast(self) -> T;
}
}

macro_rules! cast_into {
    ($ty:ty) => {
        cast_into!($ty; usize, isize, u8, i8, u16, i16, u32, i32, u64, i64, u128, i128);
    };
    ($ty:ty; $($into:ty),*) => {$(
        impl CastInto<$into> for $ty {
            fn cast(self) -> $into {
                self as $into
            }
        }
    )*};
}

cast_into!(usize);
cast_into!(isize);
cast_into!(u8);
cast_into!(i8);
cast_into!(u16);
cast_into!(i16);
cast_into!(u32);
cast_into!(i32);
cast_into!(u64);
cast_into!(i64);
cast_into!(u128);
cast_into!(i128);