1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
//! Macros used by iterators of slice.
// Shrinks the iterator when T is a ZST, setting the length to `new_len`.
// `new_len` must not exceed `self.len()`.
macro_rules! zst_set_len {
($self: ident, $new_len: expr) => {{
#![allow(unused_unsafe)] // we're sometimes used within an unsafe block
// SAFETY: same as `invalid(_mut)`, but the macro doesn't know
// which versions of that function to call, so open-code it.
$self.end = unsafe { mem::transmute::<usize, _>($new_len) };
}};
}
// Shrinks the iterator when T is a ZST, reducing the length by `n`.
// `n` must not exceed `self.len()`.
macro_rules! zst_shrink {
($self: ident, $n: ident) => {
let new_len = $self.end.addr() - $n;
zst_set_len!($self, new_len);
};
}
// Inlining is_empty and len makes a huge performance difference
macro_rules! is_empty {
($self: ident) => {
if T::IS_ZST { $self.end.addr() == 0 } else { $self.ptr.as_ptr() as *const _ == $self.end }
};
}
macro_rules! len {
($self: ident) => {{
#![allow(unused_unsafe)] // we're sometimes used within an unsafe block
if T::IS_ZST {
$self.end.addr()
} else {
// To get rid of some bounds checks (see `position`), we use ptr_sub instead of
// offset_from (Tested by `codegen/slice-position-bounds-check`.)
// SAFETY: by the type invariant pointers are aligned and `start <= end`
unsafe { $self.end.sub_ptr($self.ptr.as_ptr()) }
}
}};
}
// The shared definition of the `Iter` and `IterMut` iterators
macro_rules! iterator {
(
struct $name:ident -> $ptr:ty,
$elem:ty,
$raw_mut:tt,
{$( $mut_:tt )?},
{$($extra:tt)*}
) => {
// Returns the first element and moves the start of the iterator forwards by 1.
// Greatly improves performance compared to an inlined function. The iterator
// must not be empty.
macro_rules! next_unchecked {
($self: ident) => {& $( $mut_ )? *$self.post_inc_start(1)}
}
// Returns the last element and moves the end of the iterator backwards by 1.
// Greatly improves performance compared to an inlined function. The iterator
// must not be empty.
macro_rules! next_back_unchecked {
($self: ident) => {& $( $mut_ )? *$self.pre_dec_end(1)}
}
impl<'a, T> $name<'a, T> {
// Helper function for creating a slice from the iterator.
#[inline(always)]
fn make_slice(&self) -> &'a [T] {
// SAFETY: the iterator was created from a slice with pointer
// `self.ptr` and length `len!(self)`. This guarantees that all
// the prerequisites for `from_raw_parts` are fulfilled.
unsafe { from_raw_parts(self.ptr.as_ptr(), len!(self)) }
}
// Helper function for moving the start of the iterator forwards by `offset` elements,
// returning the old start.
// Unsafe because the offset must not exceed `self.len()`.
#[inline(always)]
unsafe fn post_inc_start(&mut self, offset: usize) -> * $raw_mut T {
let old = self.ptr;
if T::IS_ZST {
zst_shrink!(self, offset);
} else {
// SAFETY: the caller guarantees that `offset` doesn't exceed `self.len()`,
// so this new pointer is inside `self` and thus guaranteed to be non-null.
self.ptr = unsafe { self.ptr.add(offset) };
}
old.as_ptr()
}
// Helper function for moving the end of the iterator backwards by `offset` elements,
// returning the new end.
// Unsafe because the offset must not exceed `self.len()`.
#[inline(always)]
unsafe fn pre_dec_end(&mut self, offset: usize) -> * $raw_mut T {
if T::IS_ZST {
zst_shrink!(self, offset);
self.ptr.as_ptr()
} else {
// SAFETY: the caller guarantees that `offset` doesn't exceed `self.len()`,
// which is guaranteed to not overflow an `isize`. Also, the resulting pointer
// is in bounds of `slice`, which fulfills the other requirements for `offset`.
self.end = unsafe { self.end.sub(offset) };
self.end
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ExactSizeIterator for $name<'_, T> {
#[inline(always)]
fn len(&self) -> usize {
len!(self)
}
#[inline(always)]
fn is_empty(&self) -> bool {
is_empty!(self)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for $name<'a, T> {
type Item = $elem;
#[inline]
fn next(&mut self) -> Option<$elem> {
// could be implemented with slices, but this avoids bounds checks
// SAFETY: `assume` call is safe because slices over non-ZSTs must
// have a non-null end pointer. The call to `next_unchecked!` is
// safe since we check if the iterator is empty first.
unsafe {
if !<T>::IS_ZST {
assume(!self.end.is_null());
}
if is_empty!(self) {
None
} else {
Some(next_unchecked!(self))
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let exact = len!(self);
(exact, Some(exact))
}
#[inline]
fn count(self) -> usize {
len!(self)
}
#[inline]
fn nth(&mut self, n: usize) -> Option<$elem> {
if n >= len!(self) {
// This iterator is now empty.
if T::IS_ZST {
zst_set_len!(self, 0);
} else {
// SAFETY: end can't be 0 if T isn't ZST because ptr isn't 0 and end >= ptr
unsafe {
self.ptr = NonNull::new_unchecked(self.end as *mut T);
}
}
return None;
}
// SAFETY: We are in bounds. `post_inc_start` does the right thing even for ZSTs.
unsafe {
self.post_inc_start(n);
Some(next_unchecked!(self))
}
}
#[inline]
fn advance_by(&mut self, n: usize) -> Result<(), NonZeroUsize> {
let advance = cmp::min(len!(self), n);
// SAFETY: By construction, `advance` does not exceed `self.len()`.
unsafe { self.post_inc_start(advance) };
NonZeroUsize::new(n - advance).map_or(Ok(()), Err)
}
#[inline]
fn last(mut self) -> Option<$elem> {
self.next_back()
}
#[inline]
fn fold<B, F>(self, init: B, mut f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
// this implementation consists of the following optimizations compared to the
// default implementation:
// - do-while loop, as is llvm's preferred loop shape,
// see https://releases.llvm.org/16.0.0/docs/LoopTerminology.html#more-canonical-loops
// - bumps an index instead of a pointer since the latter case inhibits
// some optimizations, see #111603
// - avoids Option wrapping/matching
if is_empty!(self) {
return init;
}
let mut acc = init;
let mut i = 0;
let len = len!(self);
loop {
// SAFETY: the loop iterates `i in 0..len`, which always is in bounds of
// the slice allocation
acc = f(acc, unsafe { & $( $mut_ )? *self.ptr.add(i).as_ptr() });
// SAFETY: `i` can't overflow since it'll only reach usize::MAX if the
// slice had that length, in which case we'll break out of the loop
// after the increment
i = unsafe { i.unchecked_add(1) };
if i == len {
break;
}
}
acc
}
// We override the default implementation, which uses `try_fold`,
// because this simple implementation generates less LLVM IR and is
// faster to compile.
#[inline]
fn for_each<F>(mut self, mut f: F)
where
Self: Sized,
F: FnMut(Self::Item),
{
while let Some(x) = self.next() {
f(x);
}
}
// We override the default implementation, which uses `try_fold`,
// because this simple implementation generates less LLVM IR and is
// faster to compile.
#[inline]
fn all<F>(&mut self, mut f: F) -> bool
where
Self: Sized,
F: FnMut(Self::Item) -> bool,
{
while let Some(x) = self.next() {
if !f(x) {
return false;
}
}
true
}
// We override the default implementation, which uses `try_fold`,
// because this simple implementation generates less LLVM IR and is
// faster to compile.
#[inline]
fn any<F>(&mut self, mut f: F) -> bool
where
Self: Sized,
F: FnMut(Self::Item) -> bool,
{
while let Some(x) = self.next() {
if f(x) {
return true;
}
}
false
}
// We override the default implementation, which uses `try_fold`,
// because this simple implementation generates less LLVM IR and is
// faster to compile.
#[inline]
fn find<P>(&mut self, mut predicate: P) -> Option<Self::Item>
where
Self: Sized,
P: FnMut(&Self::Item) -> bool,
{
while let Some(x) = self.next() {
if predicate(&x) {
return Some(x);
}
}
None
}
// We override the default implementation, which uses `try_fold`,
// because this simple implementation generates less LLVM IR and is
// faster to compile.
#[inline]
fn find_map<B, F>(&mut self, mut f: F) -> Option<B>
where
Self: Sized,
F: FnMut(Self::Item) -> Option<B>,
{
while let Some(x) = self.next() {
if let Some(y) = f(x) {
return Some(y);
}
}
None
}
// We override the default implementation, which uses `try_fold`,
// because this simple implementation generates less LLVM IR and is
// faster to compile. Also, the `assume` avoids a bounds check.
#[inline]
#[rustc_inherit_overflow_checks]
fn position<P>(&mut self, mut predicate: P) -> Option<usize> where
Self: Sized,
P: FnMut(Self::Item) -> bool,
{
let n = len!(self);
let mut i = 0;
while let Some(x) = self.next() {
if predicate(x) {
// SAFETY: we are guaranteed to be in bounds by the loop invariant:
// when `i >= n`, `self.next()` returns `None` and the loop breaks.
unsafe { assume(i < n) };
return Some(i);
}
i += 1;
}
None
}
// We override the default implementation, which uses `try_fold`,
// because this simple implementation generates less LLVM IR and is
// faster to compile. Also, the `assume` avoids a bounds check.
#[inline]
fn rposition<P>(&mut self, mut predicate: P) -> Option<usize> where
P: FnMut(Self::Item) -> bool,
Self: Sized + ExactSizeIterator + DoubleEndedIterator
{
let n = len!(self);
let mut i = n;
while let Some(x) = self.next_back() {
i -= 1;
if predicate(x) {
// SAFETY: `i` must be lower than `n` since it starts at `n`
// and is only decreasing.
unsafe { assume(i < n) };
return Some(i);
}
}
None
}
#[inline]
unsafe fn __iterator_get_unchecked(&mut self, idx: usize) -> Self::Item {
// SAFETY: the caller must guarantee that `i` is in bounds of
// the underlying slice, so `i` cannot overflow an `isize`, and
// the returned references is guaranteed to refer to an element
// of the slice and thus guaranteed to be valid.
//
// Also note that the caller also guarantees that we're never
// called with the same index again, and that no other methods
// that will access this subslice are called, so it is valid
// for the returned reference to be mutable in the case of
// `IterMut`
unsafe { & $( $mut_ )? * self.ptr.as_ptr().add(idx) }
}
$($extra)*
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> DoubleEndedIterator for $name<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<$elem> {
// could be implemented with slices, but this avoids bounds checks
// SAFETY: `assume` call is safe because slices over non-ZSTs must
// have a non-null end pointer. The call to `next_back_unchecked!`
// is safe since we check if the iterator is empty first.
unsafe {
if !<T>::IS_ZST {
assume(!self.end.is_null());
}
if is_empty!(self) {
None
} else {
Some(next_back_unchecked!(self))
}
}
}
#[inline]
fn nth_back(&mut self, n: usize) -> Option<$elem> {
if n >= len!(self) {
// This iterator is now empty.
if T::IS_ZST {
zst_set_len!(self, 0);
} else {
self.end = self.ptr.as_ptr();
}
return None;
}
// SAFETY: We are in bounds. `pre_dec_end` does the right thing even for ZSTs.
unsafe {
self.pre_dec_end(n);
Some(next_back_unchecked!(self))
}
}
#[inline]
fn advance_back_by(&mut self, n: usize) -> Result<(), NonZeroUsize> {
let advance = cmp::min(len!(self), n);
// SAFETY: By construction, `advance` does not exceed `self.len()`.
unsafe { self.pre_dec_end(advance) };
NonZeroUsize::new(n - advance).map_or(Ok(()), Err)
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<T> FusedIterator for $name<'_, T> {}
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<T> TrustedLen for $name<'_, T> {}
impl<'a, T> UncheckedIterator for $name<'a, T> {
unsafe fn next_unchecked(&mut self) -> $elem {
// SAFETY: The caller promised there's at least one more item.
unsafe {
next_unchecked!(self)
}
}
}
#[stable(feature = "default_iters", since = "1.70.0")]
impl<T> Default for $name<'_, T> {
/// Creates an empty slice iterator.
///
/// ```
#[doc = concat!("# use core::slice::", stringify!($name), ";")]
#[doc = concat!("let iter: ", stringify!($name<'_, u8>), " = Default::default();")]
/// assert_eq!(iter.len(), 0);
/// ```
fn default() -> Self {
(& $( $mut_ )? []).into_iter()
}
}
}
}
macro_rules! forward_iterator {
($name:ident: $elem:ident, $iter_of:ty) => {
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, $elem, P> Iterator for $name<'a, $elem, P>
where
P: FnMut(&T) -> bool,
{
type Item = $iter_of;
#[inline]
fn next(&mut self) -> Option<$iter_of> {
self.inner.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<'a, $elem, P> FusedIterator for $name<'a, $elem, P> where P: FnMut(&T) -> bool {}
};
}