1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/// Creates an unsigned division function that uses a combination of hardware division and
/// binary long division to divide integers larger than what hardware division by itself can do. This
/// function is intended for microarchitectures that have division hardware, but not fast enough
/// multiplication hardware for `impl_trifecta` to be faster.
#[allow(unused_macros)]
macro_rules! impl_delegate {
    (
        $fn:ident, // name of the unsigned division function
        $zero_div_fn:ident, // function called when division by zero is attempted
        $half_normalization_shift:ident, // function for finding the normalization shift of $uX
        $half_division:ident, // function for division of a $uX by a $uX
        $n_h:expr, // the number of bits in $iH or $uH
        $uH:ident, // unsigned integer with half the bit width of $uX
        $uX:ident, // unsigned integer with half the bit width of $uD.
        $uD:ident, // unsigned integer type for the inputs and outputs of `$fn`
        $iD:ident // signed integer type with the same bitwidth as `$uD`
    ) => {
        /// Computes the quotient and remainder of `duo` divided by `div` and returns them as a
        /// tuple.
        pub fn $fn(duo: $uD, div: $uD) -> ($uD, $uD) {
            // The two possibility algorithm, undersubtracting long division algorithm, or any kind
            // of reciprocal based algorithm will not be fastest, because they involve large
            // multiplications that we assume to not be fast enough relative to the divisions to
            // outweigh setup times.

            // the number of bits in a $uX
            let n = $n_h * 2;

            let duo_lo = duo as $uX;
            let duo_hi = (duo >> n) as $uX;
            let div_lo = div as $uX;
            let div_hi = (div >> n) as $uX;

            match (div_lo == 0, div_hi == 0, duo_hi == 0) {
                (true, true, _) => $zero_div_fn(),
                (_, false, true) => {
                    // `duo` < `div`
                    return (0, duo);
                }
                (false, true, true) => {
                    // delegate to smaller division
                    let tmp = $half_division(duo_lo, div_lo);
                    return (tmp.0 as $uD, tmp.1 as $uD);
                }
                (false, true, false) => {
                    if duo_hi < div_lo {
                        // `quo_hi` will always be 0. This performs a binary long division algorithm
                        // to zero `duo_hi` followed by a half division.

                        // We can calculate the normalization shift using only `$uX` size functions.
                        // If we calculated the normalization shift using
                        // `$half_normalization_shift(duo_hi, div_lo false)`, it would break the
                        // assumption the function has that the first argument is more than the
                        // second argument. If the arguments are switched, the assumption holds true
                        // since `duo_hi < div_lo`.
                        let norm_shift = $half_normalization_shift(div_lo, duo_hi, false);
                        let shl = if norm_shift == 0 {
                            // Consider what happens if the msbs of `duo_hi` and `div_lo` align with
                            // no shifting. The normalization shift will always return
                            // `norm_shift == 0` regardless of whether it is fully normalized,
                            // because `duo_hi < div_lo`. In that edge case, `n - norm_shift` would
                            // result in shift overflow down the line. For the edge case, because
                            // both `duo_hi < div_lo` and we are comparing all the significant bits
                            // of `duo_hi` and `div`, we can make `shl = n - 1`.
                            n - 1
                        } else {
                            // We also cannot just use `shl = n - norm_shift - 1` in the general
                            // case, because when we are not in the edge case comparing all the
                            // significant bits, then the full `duo < div` may not be true and thus
                            // breaks the division algorithm.
                            n - norm_shift
                        };

                        // The 3 variable restoring division algorithm (see binary_long.rs) is ideal
                        // for this task, since `pow` and `quo` can be `$uX` and the delegation
                        // check is simple.
                        let mut div: $uD = div << shl;
                        let mut pow_lo: $uX = 1 << shl;
                        let mut quo_lo: $uX = 0;
                        let mut duo = duo;
                        loop {
                            let sub = duo.wrapping_sub(div);
                            if 0 <= (sub as $iD) {
                                duo = sub;
                                quo_lo |= pow_lo;
                                let duo_hi = (duo >> n) as $uX;
                                if duo_hi == 0 {
                                    // Delegate to get the rest of the quotient. Note that the
                                    // `div_lo` here is the original unshifted `div`.
                                    let tmp = $half_division(duo as $uX, div_lo);
                                    return ((quo_lo | tmp.0) as $uD, tmp.1 as $uD);
                                }
                            }
                            div >>= 1;
                            pow_lo >>= 1;
                        }
                    } else if duo_hi == div_lo {
                        // `quo_hi == 1`. This branch is cheap and helps with edge cases.
                        let tmp = $half_division(duo as $uX, div as $uX);
                        return ((1 << n) | (tmp.0 as $uD), tmp.1 as $uD);
                    } else {
                        // `div_lo < duo_hi`
                        // `rem_hi == 0`
                        if (div_lo >> $n_h) == 0 {
                            // Short division of $uD by a $uH, using $uX by $uX division
                            let div_0 = div_lo as $uH as $uX;
                            let (quo_hi, rem_3) = $half_division(duo_hi, div_0);

                            let duo_mid = ((duo >> $n_h) as $uH as $uX) | (rem_3 << $n_h);
                            let (quo_1, rem_2) = $half_division(duo_mid, div_0);

                            let duo_lo = (duo as $uH as $uX) | (rem_2 << $n_h);
                            let (quo_0, rem_1) = $half_division(duo_lo, div_0);

                            return (
                                (quo_0 as $uD) | ((quo_1 as $uD) << $n_h) | ((quo_hi as $uD) << n),
                                rem_1 as $uD,
                            );
                        }

                        // This is basically a short division composed of a half division for the hi
                        // part, specialized 3 variable binary long division in the middle, and
                        // another half division for the lo part.
                        let duo_lo = duo as $uX;
                        let tmp = $half_division(duo_hi, div_lo);
                        let quo_hi = tmp.0;
                        let mut duo = (duo_lo as $uD) | ((tmp.1 as $uD) << n);
                        // This check is required to avoid breaking the long division below.
                        if duo < div {
                            return ((quo_hi as $uD) << n, duo);
                        }

                        // The half division handled all shift alignments down to `n`, so this
                        // division can continue with a shift of `n - 1`.
                        let mut div: $uD = div << (n - 1);
                        let mut pow_lo: $uX = 1 << (n - 1);
                        let mut quo_lo: $uX = 0;
                        loop {
                            let sub = duo.wrapping_sub(div);
                            if 0 <= (sub as $iD) {
                                duo = sub;
                                quo_lo |= pow_lo;
                                let duo_hi = (duo >> n) as $uX;
                                if duo_hi == 0 {
                                    // Delegate to get the rest of the quotient. Note that the
                                    // `div_lo` here is the original unshifted `div`.
                                    let tmp = $half_division(duo as $uX, div_lo);
                                    return (
                                        (tmp.0) as $uD | (quo_lo as $uD) | ((quo_hi as $uD) << n),
                                        tmp.1 as $uD,
                                    );
                                }
                            }
                            div >>= 1;
                            pow_lo >>= 1;
                        }
                    }
                }
                (_, false, false) => {
                    // Full $uD by $uD binary long division. `quo_hi` will always be 0.
                    if duo < div {
                        return (0, duo);
                    }
                    let div_original = div;
                    let shl = $half_normalization_shift(duo_hi, div_hi, false);
                    let mut duo = duo;
                    let mut div: $uD = div << shl;
                    let mut pow_lo: $uX = 1 << shl;
                    let mut quo_lo: $uX = 0;
                    loop {
                        let sub = duo.wrapping_sub(div);
                        if 0 <= (sub as $iD) {
                            duo = sub;
                            quo_lo |= pow_lo;
                            if duo < div_original {
                                return (quo_lo as $uD, duo);
                            }
                        }
                        div >>= 1;
                        pow_lo >>= 1;
                    }
                }
            }
        }
    };
}

public_test_dep! {
/// Returns `n / d` and sets `*rem = n % d`.
///
/// This specialization exists because:
///  - The LLVM backend for 32-bit SPARC cannot compile functions that return `(u128, u128)`,
///    so we have to use an old fashioned `&mut u128` argument to return the remainder.
///  - 64-bit SPARC does not have u64 * u64 => u128 widening multiplication, which makes the
///    delegate algorithm strategy the only reasonably fast way to perform `u128` division.
// used on SPARC
#[allow(dead_code)]
pub(crate) fn u128_divide_sparc(duo: u128, div: u128, rem: &mut u128) -> u128 {
    use super::*;
    let duo_lo = duo as u64;
    let duo_hi = (duo >> 64) as u64;
    let div_lo = div as u64;
    let div_hi = (div >> 64) as u64;

    match (div_lo == 0, div_hi == 0, duo_hi == 0) {
        (true, true, _) => zero_div_fn(),
        (_, false, true) => {
            *rem = duo;
            return 0;
        }
        (false, true, true) => {
            let tmp = u64_by_u64_div_rem(duo_lo, div_lo);
            *rem = tmp.1 as u128;
            return tmp.0 as u128;
        }
        (false, true, false) => {
            if duo_hi < div_lo {
                let norm_shift = u64_normalization_shift(div_lo, duo_hi, false);
                let shl = if norm_shift == 0 {
                    64 - 1
                } else {
                    64 - norm_shift
                };

                let mut div: u128 = div << shl;
                let mut pow_lo: u64 = 1 << shl;
                let mut quo_lo: u64 = 0;
                let mut duo = duo;
                loop {
                    let sub = duo.wrapping_sub(div);
                    if 0 <= (sub as i128) {
                        duo = sub;
                        quo_lo |= pow_lo;
                        let duo_hi = (duo >> 64) as u64;
                        if duo_hi == 0 {
                            let tmp = u64_by_u64_div_rem(duo as u64, div_lo);
                            *rem = tmp.1 as u128;
                            return (quo_lo | tmp.0) as u128;
                        }
                    }
                    div >>= 1;
                    pow_lo >>= 1;
                }
            } else if duo_hi == div_lo {
                let tmp = u64_by_u64_div_rem(duo as u64, div as u64);
                *rem = tmp.1 as u128;
                return (1 << 64) | (tmp.0 as u128);
            } else {
                if (div_lo >> 32) == 0 {
                    let div_0 = div_lo as u32 as u64;
                    let (quo_hi, rem_3) = u64_by_u64_div_rem(duo_hi, div_0);

                    let duo_mid = ((duo >> 32) as u32 as u64) | (rem_3 << 32);
                    let (quo_1, rem_2) = u64_by_u64_div_rem(duo_mid, div_0);

                    let duo_lo = (duo as u32 as u64) | (rem_2 << 32);
                    let (quo_0, rem_1) = u64_by_u64_div_rem(duo_lo, div_0);

                    *rem = rem_1 as u128;
                    return (quo_0 as u128) | ((quo_1 as u128) << 32) | ((quo_hi as u128) << 64);
                }

                let duo_lo = duo as u64;
                let tmp = u64_by_u64_div_rem(duo_hi, div_lo);
                let quo_hi = tmp.0;
                let mut duo = (duo_lo as u128) | ((tmp.1 as u128) << 64);
                if duo < div {
                    *rem = duo;
                    return (quo_hi as u128) << 64;
                }

                let mut div: u128 = div << (64 - 1);
                let mut pow_lo: u64 = 1 << (64 - 1);
                let mut quo_lo: u64 = 0;
                loop {
                    let sub = duo.wrapping_sub(div);
                    if 0 <= (sub as i128) {
                        duo = sub;
                        quo_lo |= pow_lo;
                        let duo_hi = (duo >> 64) as u64;
                        if duo_hi == 0 {
                            let tmp = u64_by_u64_div_rem(duo as u64, div_lo);
                            *rem = tmp.1 as u128;
                            return (tmp.0) as u128 | (quo_lo as u128) | ((quo_hi as u128) << 64);
                        }
                    }
                    div >>= 1;
                    pow_lo >>= 1;
                }
            }
        }
        (_, false, false) => {
            if duo < div {
                *rem = duo;
                return 0;
            }
            let div_original = div;
            let shl = u64_normalization_shift(duo_hi, div_hi, false);
            let mut duo = duo;
            let mut div: u128 = div << shl;
            let mut pow_lo: u64 = 1 << shl;
            let mut quo_lo: u64 = 0;
            loop {
                let sub = duo.wrapping_sub(div);
                if 0 <= (sub as i128) {
                    duo = sub;
                    quo_lo |= pow_lo;
                    if duo < div_original {
                        *rem = duo;
                        return quo_lo as u128;
                    }
                }
                div >>= 1;
                pow_lo >>= 1;
            }
        }
    }
}
}