1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
/// Creates an unsigned division function optimized for division of integers with bitwidths
/// larger than the largest hardware integer division supported. These functions use large radix
/// division algorithms that require both fast division and very fast widening multiplication on the
/// target microarchitecture. Otherwise, `impl_delegate` should be used instead.
#[allow(unused_macros)]
macro_rules! impl_trifecta {
(
$fn:ident, // name of the unsigned division function
$zero_div_fn:ident, // function called when division by zero is attempted
$half_division:ident, // function for division of a $uX by a $uX
$n_h:expr, // the number of bits in $iH or $uH
$uH:ident, // unsigned integer with half the bit width of $uX
$uX:ident, // unsigned integer with half the bit width of $uD
$uD:ident // unsigned integer type for the inputs and outputs of `$unsigned_name`
) => {
/// Computes the quotient and remainder of `duo` divided by `div` and returns them as a
/// tuple.
pub fn $fn(duo: $uD, div: $uD) -> ($uD, $uD) {
// This is called the trifecta algorithm because it uses three main algorithms: short
// division for small divisors, the two possibility algorithm for large divisors, and an
// undersubtracting long division algorithm for intermediate cases.
// This replicates `carrying_mul` (rust-lang rfc #2417). LLVM correctly optimizes this
// to use a widening multiply to 128 bits on the relevant architectures.
fn carrying_mul(lhs: $uX, rhs: $uX) -> ($uX, $uX) {
let tmp = (lhs as $uD).wrapping_mul(rhs as $uD);
(tmp as $uX, (tmp >> ($n_h * 2)) as $uX)
}
fn carrying_mul_add(lhs: $uX, mul: $uX, add: $uX) -> ($uX, $uX) {
let tmp = (lhs as $uD)
.wrapping_mul(mul as $uD)
.wrapping_add(add as $uD);
(tmp as $uX, (tmp >> ($n_h * 2)) as $uX)
}
// the number of bits in a $uX
let n = $n_h * 2;
if div == 0 {
$zero_div_fn()
}
// Trying to use a normalization shift function will cause inelegancies in the code and
// inefficiencies for architectures with a native count leading zeros instruction. The
// undersubtracting algorithm needs both values (keeping the original `div_lz` but
// updating `duo_lz` multiple times), so we assume hardware support for fast
// `leading_zeros` calculation.
let div_lz = div.leading_zeros();
let mut duo_lz = duo.leading_zeros();
// the possible ranges of `duo` and `div` at this point:
// `0 <= duo < 2^n_d`
// `1 <= div < 2^n_d`
// quotient is 0 or 1 branch
if div_lz <= duo_lz {
// The quotient cannot be more than 1. The highest set bit of `duo` needs to be at
// least one place higher than `div` for the quotient to be more than 1.
if duo >= div {
return (1, duo - div);
} else {
return (0, duo);
}
}
// `_sb` is the number of significant bits (from the ones place to the highest set bit)
// `{2, 2^div_sb} <= duo < 2^n_d`
// `1 <= div < {2^duo_sb, 2^(n_d - 1)}`
// smaller division branch
if duo_lz >= n {
// `duo < 2^n` so it will fit in a $uX. `div` will also fit in a $uX (because of the
// `div_lz <= duo_lz` branch) so no numerical error.
let (quo, rem) = $half_division(duo as $uX, div as $uX);
return (quo as $uD, rem as $uD);
}
// `{2^n, 2^div_sb} <= duo < 2^n_d`
// `1 <= div < {2^duo_sb, 2^(n_d - 1)}`
// short division branch
if div_lz >= (n + $n_h) {
// `1 <= div < {2^duo_sb, 2^n_h}`
// It is barely possible to improve the performance of this by calculating the
// reciprocal and removing one `$half_division`, but only if the CPU can do fast
// multiplications in parallel. Other reciprocal based methods can remove two
// `$half_division`s, but have multiplications that cannot be done in parallel and
// reduce performance. I have decided to use this trivial short division method and
// rely on the CPU having quick divisions.
let duo_hi = (duo >> n) as $uX;
let div_0 = div as $uH as $uX;
let (quo_hi, rem_3) = $half_division(duo_hi, div_0);
let duo_mid = ((duo >> $n_h) as $uH as $uX) | (rem_3 << $n_h);
let (quo_1, rem_2) = $half_division(duo_mid, div_0);
let duo_lo = (duo as $uH as $uX) | (rem_2 << $n_h);
let (quo_0, rem_1) = $half_division(duo_lo, div_0);
return (
(quo_0 as $uD) | ((quo_1 as $uD) << $n_h) | ((quo_hi as $uD) << n),
rem_1 as $uD,
);
}
// relative leading significant bits, cannot overflow because of above branches
let lz_diff = div_lz - duo_lz;
// `{2^n, 2^div_sb} <= duo < 2^n_d`
// `2^n_h <= div < {2^duo_sb, 2^(n_d - 1)}`
// `mul` or `mul - 1` branch
if lz_diff < $n_h {
// Two possibility division algorithm
// The most significant bits of `duo` and `div` are within `$n_h` bits of each
// other. If we take the `n` most significant bits of `duo` and divide them by the
// corresponding bits in `div`, it produces a quotient value `quo`. It happens that
// `quo` or `quo - 1` will always be the correct quotient for the whole number. In
// other words, the bits less significant than the `n` most significant bits of
// `duo` and `div` can only influence the quotient to be one of two values.
// Because there are only two possibilities, there only needs to be one `$uH` sized
// division, a `$uH` by `$uD` multiplication, and only one branch with a few simple
// operations.
//
// Proof that the true quotient can only be `quo` or `quo - 1`.
// All `/` operators here are floored divisions.
//
// `shift` is the number of bits not in the higher `n` significant bits of `duo`.
// (definitions)
// 0. shift = n - duo_lz
// 1. duo_sig_n == duo / 2^shift
// 2. div_sig_n == div / 2^shift
// 3. quo == duo_sig_n / div_sig_n
//
//
// We are trying to find the true quotient, `true_quo`.
// 4. true_quo = duo / div. (definition)
//
// This is true because of the bits that are cut off during the bit shift.
// 5. duo_sig_n * 2^shift <= duo < (duo_sig_n + 1) * 2^shift.
// 6. div_sig_n * 2^shift <= div < (div_sig_n + 1) * 2^shift.
//
// Dividing each bound of (5) by each bound of (6) gives 4 possibilities for what
// `true_quo == duo / div` is bounded by:
// (duo_sig_n * 2^shift) / (div_sig_n * 2^shift)
// (duo_sig_n * 2^shift) / ((div_sig_n + 1) * 2^shift)
// ((duo_sig_n + 1) * 2^shift) / (div_sig_n * 2^shift)
// ((duo_sig_n + 1) * 2^shift) / ((div_sig_n + 1) * 2^shift)
//
// Simplifying each of these four:
// duo_sig_n / div_sig_n
// duo_sig_n / (div_sig_n + 1)
// (duo_sig_n + 1) / div_sig_n
// (duo_sig_n + 1) / (div_sig_n + 1)
//
// Taking the smallest and the largest of these as the low and high bounds
// and replacing `duo / div` with `true_quo`:
// 7. duo_sig_n / (div_sig_n + 1) <= true_quo < (duo_sig_n + 1) / div_sig_n
//
// The `lz_diff < n_h` conditional on this branch makes sure that `div_sig_n` is at
// least `2^n_h`, and the `div_lz <= duo_lz` branch makes sure that the highest bit
// of `div_sig_n` is not the `2^(n - 1)` bit.
// 8. `2^(n - 1) <= duo_sig_n < 2^n`
// 9. `2^n_h <= div_sig_n < 2^(n - 1)`
//
// We want to prove that either
// `(duo_sig_n + 1) / div_sig_n == duo_sig_n / (div_sig_n + 1)` or that
// `(duo_sig_n + 1) / div_sig_n == duo_sig_n / (div_sig_n + 1) + 1`.
//
// We also want to prove that `quo` is one of these:
// `duo_sig_n / div_sig_n == duo_sig_n / (div_sig_n + 1)` or
// `duo_sig_n / div_sig_n == (duo_sig_n + 1) / div_sig_n`.
//
// When 1 is added to the numerator of `duo_sig_n / div_sig_n` to produce
// `(duo_sig_n + 1) / div_sig_n`, it is not possible that the value increases by
// more than 1 with floored integer arithmetic and `div_sig_n != 0`. Consider
// `x/y + 1 < (x + 1)/y` <=> `x/y + 1 < x/y + 1/y` <=> `1 < 1/y` <=> `y < 1`.
// `div_sig_n` is a nonzero integer. Thus,
// 10. `duo_sig_n / div_sig_n == (duo_sig_n + 1) / div_sig_n` or
// `(duo_sig_n / div_sig_n) + 1 == (duo_sig_n + 1) / div_sig_n.
//
// When 1 is added to the denominator of `duo_sig_n / div_sig_n` to produce
// `duo_sig_n / (div_sig_n + 1)`, it is not possible that the value decreases by
// more than 1 with the bounds (8) and (9). Consider `x/y - 1 <= x/(y + 1)` <=>
// `(x - y)/y < x/(y + 1)` <=> `(y + 1)*(x - y) < x*y` <=> `x*y - y*y + x - y < x*y`
// <=> `x < y*y + y`. The smallest value of `div_sig_n` is `2^n_h` and the largest
// value of `duo_sig_n` is `2^n - 1`. Substituting reveals `2^n - 1 < 2^n + 2^n_h`.
// Thus,
// 11. `duo_sig_n / div_sig_n == duo_sig_n / (div_sig_n + 1)` or
// `(duo_sig_n / div_sig_n) - 1` == duo_sig_n / (div_sig_n + 1)`
//
// Combining both (10) and (11), we know that
// `quo - 1 <= duo_sig_n / (div_sig_n + 1) <= true_quo
// < (duo_sig_n + 1) / div_sig_n <= quo + 1` and therefore:
// 12. quo - 1 <= true_quo < quo + 1
//
// In a lot of division algorithms using smaller divisions to construct a larger
// division, we often encounter a situation where the approximate `quo` value
// calculated from a smaller division is multiple increments away from the true
// `quo` value. In those algorithms, multiple correction steps have to be applied.
// Those correction steps may need more multiplications to test `duo - (quo*div)`
// again. Because of the fact that our `quo` can only be one of two values, we can
// see if `duo - (quo*div)` overflows. If it did overflow, then we know that we have
// the larger of the two values (since the true quotient is unique, and any larger
// quotient will cause `duo - (quo*div)` to be negative). Also because there is only
// one correction needed, we can calculate the remainder `duo - (true_quo*div) ==
// duo - ((quo - 1)*div) == duo - (quo*div - div) == duo + div - quo*div`.
// If `duo - (quo*div)` did not overflow, then we have the correct answer.
let shift = n - duo_lz;
let duo_sig_n = (duo >> shift) as $uX;
let div_sig_n = (div >> shift) as $uX;
let quo = $half_division(duo_sig_n, div_sig_n).0;
// The larger `quo` value can overflow `$uD` in the right circumstances. This is a
// manual `carrying_mul_add` with overflow checking.
let div_lo = div as $uX;
let div_hi = (div >> n) as $uX;
let (tmp_lo, carry) = carrying_mul(quo, div_lo);
let (tmp_hi, overflow) = carrying_mul_add(quo, div_hi, carry);
let tmp = (tmp_lo as $uD) | ((tmp_hi as $uD) << n);
if (overflow != 0) || (duo < tmp) {
return (
(quo - 1) as $uD,
// Both the addition and subtraction can overflow, but when combined end up
// as a correct positive number.
duo.wrapping_add(div).wrapping_sub(tmp),
);
} else {
return (quo as $uD, duo - tmp);
}
}
// Undersubtracting long division algorithm.
// Instead of clearing a minimum of 1 bit from `duo` per iteration via binary long
// division, `n_h - 1` bits are cleared per iteration with this algorithm. It is a more
// complicated version of regular long division. Most integer division algorithms tend
// to guess a part of the quotient, and may have a larger quotient than the true
// quotient (which when multiplied by `div` will "oversubtract" the original dividend).
// They then check if the quotient was in fact too large and then have to correct it.
// This long division algorithm has been carefully constructed to always underguess the
// quotient by slim margins. This allows different subalgorithms to be blindly jumped to
// without needing an extra correction step.
//
// The only problem is that this subalgorithm will not work for many ranges of `duo` and
// `div`. Fortunately, the short division, two possibility algorithm, and other simple
// cases happen to exactly fill these gaps.
//
// For an example, consider the division of 76543210 by 213 and assume that `n_h` is
// equal to two decimal digits (note: we are working with base 10 here for readability).
// The first `sig_n_h` part of the divisor (21) is taken and is incremented by 1 to
// prevent oversubtraction. We also record the number of extra places not a part of
// the `sig_n` or `sig_n_h` parts.
//
// sig_n_h == 2 digits, sig_n == 4 digits
//
// vvvv <- `duo_sig_n`
// 76543210
// ^^^^ <- extra places in duo, `duo_extra == 4`
//
// vv <- `div_sig_n_h`
// 213
// ^ <- extra places in div, `div_extra == 1`
//
// The difference in extra places, `duo_extra - div_extra == extra_shl == 3`, is used
// for shifting partial sums in the long division.
//
// In the first step, the first `sig_n` part of duo (7654) is divided by
// `div_sig_n_h_add_1` (22), which results in a partial quotient of 347. This is
// multiplied by the whole divisor to make 73911, which is shifted left by `extra_shl`
// and subtracted from duo. The partial quotient is also shifted left by `extra_shl` to
// be added to `quo`.
//
// 347
// ________
// |76543210
// -73911
// 2632210
//
// Variables dependent on duo have to be updated:
//
// vvvv <- `duo_sig_n == 2632`
// 2632210
// ^^^ <- `duo_extra == 3`
//
// `extra_shl == 2`
//
// Two more steps are taken after this and then duo fits into `n` bits, and then a final
// normal long division step is made. The partial quotients are all progressively added
// to each other in the actual algorithm, but here I have left them all in a tower that
// can be added together to produce the quotient, 359357.
//
// 14
// 443
// 119
// 347
// ________
// |76543210
// -73911
// 2632210
// -25347
// 97510
// -94359
// 3151
// -2982
// 169 <- the remainder
let mut duo = duo;
let mut quo: $uD = 0;
// The number of lesser significant bits not a part of `div_sig_n_h`
let div_extra = (n + $n_h) - div_lz;
// The most significant `n_h` bits of div
let div_sig_n_h = (div >> div_extra) as $uH;
// This needs to be a `$uX` in case of overflow from the increment
let div_sig_n_h_add1 = (div_sig_n_h as $uX) + 1;
// `{2^n, 2^(div_sb + n_h)} <= duo < 2^n_d`
// `2^n_h <= div < {2^(duo_sb - n_h), 2^n}`
loop {
// The number of lesser significant bits not a part of `duo_sig_n`
let duo_extra = n - duo_lz;
// The most significant `n` bits of `duo`
let duo_sig_n = (duo >> duo_extra) as $uX;
// the two possibility algorithm requires that the difference between msbs is less
// than `n_h`, so the comparison is `<=` here.
if div_extra <= duo_extra {
// Undersubtracting long division step
let quo_part = $half_division(duo_sig_n, div_sig_n_h_add1).0 as $uD;
let extra_shl = duo_extra - div_extra;
// Addition to the quotient.
quo += (quo_part << extra_shl);
// Subtraction from `duo`. At least `n_h - 1` bits are cleared from `duo` here.
duo -= (div.wrapping_mul(quo_part) << extra_shl);
} else {
// Two possibility algorithm
let shift = n - duo_lz;
let duo_sig_n = (duo >> shift) as $uX;
let div_sig_n = (div >> shift) as $uX;
let quo_part = $half_division(duo_sig_n, div_sig_n).0;
let div_lo = div as $uX;
let div_hi = (div >> n) as $uX;
let (tmp_lo, carry) = carrying_mul(quo_part, div_lo);
// The undersubtracting long division algorithm has already run once, so
// overflow beyond `$uD` bits is not possible here
let (tmp_hi, _) = carrying_mul_add(quo_part, div_hi, carry);
let tmp = (tmp_lo as $uD) | ((tmp_hi as $uD) << n);
if duo < tmp {
return (
quo + ((quo_part - 1) as $uD),
duo.wrapping_add(div).wrapping_sub(tmp),
);
} else {
return (quo + (quo_part as $uD), duo - tmp);
}
}
duo_lz = duo.leading_zeros();
if div_lz <= duo_lz {
// quotient can have 0 or 1 added to it
if div <= duo {
return (quo + 1, duo - div);
} else {
return (quo, duo);
}
}
// This can only happen if `div_sd < n` (because of previous "quo = 0 or 1"
// branches), but it is not worth it to unroll further.
if n <= duo_lz {
// simple division and addition
let tmp = $half_division(duo as $uX, div as $uX);
return (quo + (tmp.0 as $uD), tmp.1 as $uD);
}
}
}
};
}