1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
use float::Float;
use int::{CastInto, Int};

/// Returns `a + b`
fn add<F: Float>(a: F, b: F) -> F
where
    u32: CastInto<F::Int>,
    F::Int: CastInto<u32>,
    i32: CastInto<F::Int>,
    F::Int: CastInto<i32>,
{
    let one = F::Int::ONE;
    let zero = F::Int::ZERO;

    let bits = F::BITS.cast();
    let significand_bits = F::SIGNIFICAND_BITS;
    let max_exponent = F::EXPONENT_MAX;

    let implicit_bit = F::IMPLICIT_BIT;
    let significand_mask = F::SIGNIFICAND_MASK;
    let sign_bit = F::SIGN_MASK as F::Int;
    let abs_mask = sign_bit - one;
    let exponent_mask = F::EXPONENT_MASK;
    let inf_rep = exponent_mask;
    let quiet_bit = implicit_bit >> 1;
    let qnan_rep = exponent_mask | quiet_bit;

    let mut a_rep = a.repr();
    let mut b_rep = b.repr();
    let a_abs = a_rep & abs_mask;
    let b_abs = b_rep & abs_mask;

    // Detect if a or b is zero, infinity, or NaN.
    if a_abs.wrapping_sub(one) >= inf_rep - one || b_abs.wrapping_sub(one) >= inf_rep - one {
        // NaN + anything = qNaN
        if a_abs > inf_rep {
            return F::from_repr(a_abs | quiet_bit);
        }
        // anything + NaN = qNaN
        if b_abs > inf_rep {
            return F::from_repr(b_abs | quiet_bit);
        }

        if a_abs == inf_rep {
            // +/-infinity + -/+infinity = qNaN
            if (a.repr() ^ b.repr()) == sign_bit {
                return F::from_repr(qnan_rep);
            } else {
                // +/-infinity + anything remaining = +/- infinity
                return a;
            }
        }

        // anything remaining + +/-infinity = +/-infinity
        if b_abs == inf_rep {
            return b;
        }

        // zero + anything = anything
        if a_abs == Int::ZERO {
            // but we need to get the sign right for zero + zero
            if b_abs == Int::ZERO {
                return F::from_repr(a.repr() & b.repr());
            } else {
                return b;
            }
        }

        // anything + zero = anything
        if b_abs == Int::ZERO {
            return a;
        }
    }

    // Swap a and b if necessary so that a has the larger absolute value.
    if b_abs > a_abs {
        // Don't use mem::swap because it may generate references to memcpy in unoptimized code.
        let tmp = a_rep;
        a_rep = b_rep;
        b_rep = tmp;
    }

    // Extract the exponent and significand from the (possibly swapped) a and b.
    let mut a_exponent: i32 = ((a_rep & exponent_mask) >> significand_bits).cast();
    let mut b_exponent: i32 = ((b_rep & exponent_mask) >> significand_bits).cast();
    let mut a_significand = a_rep & significand_mask;
    let mut b_significand = b_rep & significand_mask;

    // normalize any denormals, and adjust the exponent accordingly.
    if a_exponent == 0 {
        let (exponent, significand) = F::normalize(a_significand);
        a_exponent = exponent;
        a_significand = significand;
    }
    if b_exponent == 0 {
        let (exponent, significand) = F::normalize(b_significand);
        b_exponent = exponent;
        b_significand = significand;
    }

    // The sign of the result is the sign of the larger operand, a.  If they
    // have opposite signs, we are performing a subtraction; otherwise addition.
    let result_sign = a_rep & sign_bit;
    let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;

    // Shift the significands to give us round, guard and sticky, and or in the
    // implicit significand bit.  (If we fell through from the denormal path it
    // was already set by normalize(), but setting it twice won't hurt
    // anything.)
    a_significand = (a_significand | implicit_bit) << 3;
    b_significand = (b_significand | implicit_bit) << 3;

    // Shift the significand of b by the difference in exponents, with a sticky
    // bottom bit to get rounding correct.
    let align = a_exponent.wrapping_sub(b_exponent).cast();
    if align != Int::ZERO {
        if align < bits {
            let sticky =
                F::Int::from_bool(b_significand << bits.wrapping_sub(align).cast() != Int::ZERO);
            b_significand = (b_significand >> align.cast()) | sticky;
        } else {
            b_significand = one; // sticky; b is known to be non-zero.
        }
    }
    if subtraction {
        a_significand = a_significand.wrapping_sub(b_significand);
        // If a == -b, return +zero.
        if a_significand == Int::ZERO {
            return F::from_repr(Int::ZERO);
        }

        // If partial cancellation occured, we need to left-shift the result
        // and adjust the exponent:
        if a_significand < implicit_bit << 3 {
            let shift =
                a_significand.leading_zeros() as i32 - (implicit_bit << 3).leading_zeros() as i32;
            a_significand <<= shift;
            a_exponent -= shift;
        }
    } else {
        // addition
        a_significand += b_significand;

        // If the addition carried up, we need to right-shift the result and
        // adjust the exponent:
        if a_significand & implicit_bit << 4 != Int::ZERO {
            let sticky = F::Int::from_bool(a_significand & one != Int::ZERO);
            a_significand = a_significand >> 1 | sticky;
            a_exponent += 1;
        }
    }

    // If we have overflowed the type, return +/- infinity:
    if a_exponent >= max_exponent as i32 {
        return F::from_repr(inf_rep | result_sign);
    }

    if a_exponent <= 0 {
        // Result is denormal before rounding; the exponent is zero and we
        // need to shift the significand.
        let shift = (1 - a_exponent).cast();
        let sticky =
            F::Int::from_bool((a_significand << bits.wrapping_sub(shift).cast()) != Int::ZERO);
        a_significand = a_significand >> shift.cast() | sticky;
        a_exponent = 0;
    }

    // Low three bits are round, guard, and sticky.
    let a_significand_i32: i32 = a_significand.cast();
    let round_guard_sticky: i32 = a_significand_i32 & 0x7;

    // Shift the significand into place, and mask off the implicit bit.
    let mut result = a_significand >> 3 & significand_mask;

    // Insert the exponent and sign.
    result |= a_exponent.cast() << significand_bits;
    result |= result_sign;

    // Final rounding.  The result may overflow to infinity, but that is the
    // correct result in that case.
    if round_guard_sticky > 0x4 {
        result += one;
    }
    if round_guard_sticky == 0x4 {
        result += result & one;
    }

    F::from_repr(result)
}

intrinsics! {
    #[aapcs_on_arm]
    #[arm_aeabi_alias = __aeabi_fadd]
    pub extern "C" fn __addsf3(a: f32, b: f32) -> f32 {
        add(a, b)
    }

    #[aapcs_on_arm]
    #[arm_aeabi_alias = __aeabi_dadd]
    pub extern "C" fn __adddf3(a: f64, b: f64) -> f64 {
        add(a, b)
    }

    #[cfg(target_arch = "arm")]
    pub extern "C" fn __addsf3vfp(a: f32, b: f32) -> f32 {
        a + b
    }

    #[cfg(target_arch = "arm")]
    pub extern "C" fn __adddf3vfp(a: f64, b: f64) -> f64 {
        a + b
    }
}