1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
use float::Float;
use int::{CastInto, DInt, HInt, Int};

fn mul<F: Float>(a: F, b: F) -> F
where
    u32: CastInto<F::Int>,
    F::Int: CastInto<u32>,
    i32: CastInto<F::Int>,
    F::Int: CastInto<i32>,
    F::Int: HInt,
{
    let one = F::Int::ONE;
    let zero = F::Int::ZERO;

    let bits = F::BITS;
    let significand_bits = F::SIGNIFICAND_BITS;
    let max_exponent = F::EXPONENT_MAX;

    let exponent_bias = F::EXPONENT_BIAS;

    let implicit_bit = F::IMPLICIT_BIT;
    let significand_mask = F::SIGNIFICAND_MASK;
    let sign_bit = F::SIGN_MASK as F::Int;
    let abs_mask = sign_bit - one;
    let exponent_mask = F::EXPONENT_MASK;
    let inf_rep = exponent_mask;
    let quiet_bit = implicit_bit >> 1;
    let qnan_rep = exponent_mask | quiet_bit;
    let exponent_bits = F::EXPONENT_BITS;

    let a_rep = a.repr();
    let b_rep = b.repr();

    let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
    let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
    let product_sign = (a_rep ^ b_rep) & sign_bit;

    let mut a_significand = a_rep & significand_mask;
    let mut b_significand = b_rep & significand_mask;
    let mut scale = 0;

    // Detect if a or b is zero, denormal, infinity, or NaN.
    if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
        || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
    {
        let a_abs = a_rep & abs_mask;
        let b_abs = b_rep & abs_mask;

        // NaN + anything = qNaN
        if a_abs > inf_rep {
            return F::from_repr(a_rep | quiet_bit);
        }
        // anything + NaN = qNaN
        if b_abs > inf_rep {
            return F::from_repr(b_rep | quiet_bit);
        }

        if a_abs == inf_rep {
            if b_abs != zero {
                // infinity * non-zero = +/- infinity
                return F::from_repr(a_abs | product_sign);
            } else {
                // infinity * zero = NaN
                return F::from_repr(qnan_rep);
            }
        }

        if b_abs == inf_rep {
            if a_abs != zero {
                // infinity * non-zero = +/- infinity
                return F::from_repr(b_abs | product_sign);
            } else {
                // infinity * zero = NaN
                return F::from_repr(qnan_rep);
            }
        }

        // zero * anything = +/- zero
        if a_abs == zero {
            return F::from_repr(product_sign);
        }

        // anything * zero = +/- zero
        if b_abs == zero {
            return F::from_repr(product_sign);
        }

        // one or both of a or b is denormal, the other (if applicable) is a
        // normal number.  Renormalize one or both of a and b, and set scale to
        // include the necessary exponent adjustment.
        if a_abs < implicit_bit {
            let (exponent, significand) = F::normalize(a_significand);
            scale += exponent;
            a_significand = significand;
        }

        if b_abs < implicit_bit {
            let (exponent, significand) = F::normalize(b_significand);
            scale += exponent;
            b_significand = significand;
        }
    }

    // Or in the implicit significand bit.  (If we fell through from the
    // denormal path it was already set by normalize( ), but setting it twice
    // won't hurt anything.)
    a_significand |= implicit_bit;
    b_significand |= implicit_bit;

    // Get the significand of a*b.  Before multiplying the significands, shift
    // one of them left to left-align it in the field.  Thus, the product will
    // have (exponentBits + 2) integral digits, all but two of which must be
    // zero.  Normalizing this result is just a conditional left-shift by one
    // and bumping the exponent accordingly.
    let (mut product_low, mut product_high) = a_significand
        .widen_mul(b_significand << exponent_bits)
        .lo_hi();

    let a_exponent_i32: i32 = a_exponent.cast();
    let b_exponent_i32: i32 = b_exponent.cast();
    let mut product_exponent: i32 = a_exponent_i32
        .wrapping_add(b_exponent_i32)
        .wrapping_add(scale)
        .wrapping_sub(exponent_bias as i32);

    // Normalize the significand, adjust exponent if needed.
    if (product_high & implicit_bit) != zero {
        product_exponent = product_exponent.wrapping_add(1);
    } else {
        product_high = (product_high << 1) | (product_low >> (bits - 1));
        product_low <<= 1;
    }

    // If we have overflowed the type, return +/- infinity.
    if product_exponent >= max_exponent as i32 {
        return F::from_repr(inf_rep | product_sign);
    }

    if product_exponent <= 0 {
        // Result is denormal before rounding
        //
        // If the result is so small that it just underflows to zero, return
        // a zero of the appropriate sign.  Mathematically there is no need to
        // handle this case separately, but we make it a special case to
        // simplify the shift logic.
        let shift = one.wrapping_sub(product_exponent.cast()).cast();
        if shift >= bits {
            return F::from_repr(product_sign);
        }

        // Otherwise, shift the significand of the result so that the round
        // bit is the high bit of productLo.
        if shift < bits {
            let sticky = product_low << (bits - shift);
            product_low = product_high << (bits - shift) | product_low >> shift | sticky;
            product_high >>= shift;
        } else if shift < (2 * bits) {
            let sticky = product_high << (2 * bits - shift) | product_low;
            product_low = product_high >> (shift - bits) | sticky;
            product_high = zero;
        } else {
            product_high = zero;
        }
    } else {
        // Result is normal before rounding; insert the exponent.
        product_high &= significand_mask;
        product_high |= product_exponent.cast() << significand_bits;
    }

    // Insert the sign of the result:
    product_high |= product_sign;

    // Final rounding.  The final result may overflow to infinity, or underflow
    // to zero, but those are the correct results in those cases.  We use the
    // default IEEE-754 round-to-nearest, ties-to-even rounding mode.
    if product_low > sign_bit {
        product_high += one;
    }

    if product_low == sign_bit {
        product_high += product_high & one;
    }

    F::from_repr(product_high)
}

intrinsics! {
    #[aapcs_on_arm]
    #[arm_aeabi_alias = __aeabi_fmul]
    pub extern "C" fn __mulsf3(a: f32, b: f32) -> f32 {
        mul(a, b)
    }

    #[aapcs_on_arm]
    #[arm_aeabi_alias = __aeabi_dmul]
    pub extern "C" fn __muldf3(a: f64, b: f64) -> f64 {
        mul(a, b)
    }

    #[cfg(target_arch = "arm")]
    pub extern "C" fn __mulsf3vfp(a: f32, b: f32) -> f32 {
        a * b
    }

    #[cfg(target_arch = "arm")]
    pub extern "C" fn __muldf3vfp(a: f64, b: f64) -> f64 {
        a * b
    }
}