1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// On most modern Intel and AMD processors, "rep movsq" and "rep stosq" have
// been enhanced to perform better than an simple qword loop, making them ideal
// for implementing memcpy/memset. Note that "rep cmps" has received no such
// enhancement, so it is not used to implement memcmp.
//
// On certain recent Intel processors, "rep movsb" and "rep stosb" have been
// further enhanced to automatically select the best microarchitectural
// implementation based on length and alignment. See the following features from
// the "Intel® 64 and IA-32 Architectures Optimization Reference Manual":
//  - ERMSB - Enhanced REP MOVSB and STOSB (Ivy Bridge and later)
//  - FSRM - Fast Short REP MOV (Ice Lake and later)
//  - Fast Zero-Length MOVSB (On no current hardware)
//  - Fast Short STOSB (On no current hardware)
//
// To simplify things, we switch to using the byte-based variants if the "ermsb"
// feature is present at compile-time. We don't bother detecting other features.
// Note that ERMSB does not enhance the backwards (DF=1) "rep movsb".

use core::arch::asm;
use core::intrinsics;
use core::mem;

#[inline(always)]
#[cfg(target_feature = "ermsb")]
pub unsafe fn copy_forward(dest: *mut u8, src: *const u8, count: usize) {
    // FIXME: Use the Intel syntax once we drop LLVM 9 support on rust-lang/rust.
    core::arch::asm!(
        "repe movsb (%rsi), (%rdi)",
        inout("rcx") count => _,
        inout("rdi") dest => _,
        inout("rsi") src => _,
        options(att_syntax, nostack, preserves_flags)
    );
}

#[inline(always)]
#[cfg(not(target_feature = "ermsb"))]
pub unsafe fn copy_forward(mut dest: *mut u8, mut src: *const u8, count: usize) {
    let (pre_byte_count, qword_count, byte_count) = rep_param(dest, count);
    // Separating the blocks gives the compiler more freedom to reorder instructions.
    asm!(
        "rep movsb",
        inout("ecx") pre_byte_count => _,
        inout("rdi") dest => dest,
        inout("rsi") src => src,
        options(att_syntax, nostack, preserves_flags)
    );
    asm!(
        "rep movsq",
        inout("rcx") qword_count => _,
        inout("rdi") dest => dest,
        inout("rsi") src => src,
        options(att_syntax, nostack, preserves_flags)
    );
    asm!(
        "rep movsb",
        inout("ecx") byte_count => _,
        inout("rdi") dest => _,
        inout("rsi") src => _,
        options(att_syntax, nostack, preserves_flags)
    );
}

#[inline(always)]
pub unsafe fn copy_backward(dest: *mut u8, src: *const u8, count: usize) {
    let (pre_byte_count, qword_count, byte_count) = rep_param(dest, count);
    // We can't separate this block due to std/cld
    asm!(
        "std",
        "rep movsb",
        "sub $7, %rsi",
        "sub $7, %rdi",
        "mov {qword_count}, %rcx",
        "rep movsq",
        "test {pre_byte_count:e}, {pre_byte_count:e}",
        "add $7, %rsi",
        "add $7, %rdi",
        "mov {pre_byte_count:e}, %ecx",
        "rep movsb",
        "cld",
        pre_byte_count = in(reg) pre_byte_count,
        qword_count = in(reg) qword_count,
        inout("ecx") byte_count => _,
        inout("rdi") dest.add(count - 1) => _,
        inout("rsi") src.add(count - 1) => _,
        // We modify flags, but we restore it afterwards
        options(att_syntax, nostack, preserves_flags)
    );
}

#[inline(always)]
#[cfg(target_feature = "ermsb")]
pub unsafe fn set_bytes(dest: *mut u8, c: u8, count: usize) {
    // FIXME: Use the Intel syntax once we drop LLVM 9 support on rust-lang/rust.
    core::arch::asm!(
        "repe stosb %al, (%rdi)",
        inout("rcx") count => _,
        inout("rdi") dest => _,
        inout("al") c => _,
        options(att_syntax, nostack, preserves_flags)
    )
}

#[inline(always)]
#[cfg(not(target_feature = "ermsb"))]
pub unsafe fn set_bytes(mut dest: *mut u8, c: u8, count: usize) {
    let c = c as u64 * 0x0101_0101_0101_0101;
    let (pre_byte_count, qword_count, byte_count) = rep_param(dest, count);
    // Separating the blocks gives the compiler more freedom to reorder instructions.
    asm!(
        "rep stosb",
        inout("ecx") pre_byte_count => _,
        inout("rdi") dest => dest,
        in("rax") c,
        options(att_syntax, nostack, preserves_flags)
    );
    asm!(
        "rep stosq",
        inout("rcx") qword_count => _,
        inout("rdi") dest => dest,
        in("rax") c,
        options(att_syntax, nostack, preserves_flags)
    );
    asm!(
        "rep stosb",
        inout("ecx") byte_count => _,
        inout("rdi") dest => _,
        in("rax") c,
        options(att_syntax, nostack, preserves_flags)
    );
}

#[inline(always)]
pub unsafe fn compare_bytes(a: *const u8, b: *const u8, n: usize) -> i32 {
    #[inline(always)]
    unsafe fn cmp<T, U, F>(mut a: *const T, mut b: *const T, n: usize, f: F) -> i32
    where
        T: Clone + Copy + Eq,
        U: Clone + Copy + Eq,
        F: FnOnce(*const U, *const U, usize) -> i32,
    {
        // Ensure T is not a ZST.
        const { assert!(mem::size_of::<T>() != 0) };

        let end = a.add(intrinsics::unchecked_div(n, mem::size_of::<T>()));
        while a != end {
            if a.read_unaligned() != b.read_unaligned() {
                return f(a.cast(), b.cast(), mem::size_of::<T>());
            }
            a = a.add(1);
            b = b.add(1);
        }
        f(
            a.cast(),
            b.cast(),
            intrinsics::unchecked_rem(n, mem::size_of::<T>()),
        )
    }
    let c1 = |mut a: *const u8, mut b: *const u8, n| {
        for _ in 0..n {
            if a.read() != b.read() {
                return i32::from(a.read()) - i32::from(b.read());
            }
            a = a.add(1);
            b = b.add(1);
        }
        0
    };
    let c2 = |a: *const u16, b, n| cmp(a, b, n, c1);
    let c4 = |a: *const u32, b, n| cmp(a, b, n, c2);
    let c8 = |a: *const u64, b, n| cmp(a, b, n, c4);
    let c16 = |a: *const u128, b, n| cmp(a, b, n, c8);
    c16(a.cast(), b.cast(), n)
}

// In order to process more than on byte simultaneously when executing strlen,
// two things must be considered:
// * An n byte read with an n-byte aligned address will never cross
//   a page boundary and will always succeed. Any smaller alignment
//   may result in a read that will cross a page boundary, which may
//   trigger an access violation.
// * Surface Rust considers any kind of out-of-bounds read as undefined
//   behaviour. To dodge this, memory access operations are written
//   using inline assembly.

#[cfg(target_feature = "sse2")]
#[inline(always)]
pub unsafe fn c_string_length(mut s: *const core::ffi::c_char) -> usize {
    use core::arch::x86_64::{__m128i, _mm_cmpeq_epi8, _mm_movemask_epi8, _mm_set1_epi8};

    let mut n = 0;

    // The use of _mm_movemask_epi8 and company allow for speedups,
    // but they aren't cheap by themselves. Thus, possibly small strings
    // are handled in simple loops.

    for _ in 0..4 {
        if *s == 0 {
            return n;
        }

        n += 1;
        s = s.add(1);
    }

    // Shave of the least significand bits to align the address to a 16
    // byte boundary. The shaved of bits are used to correct the first iteration.

    let align = s as usize & 15;
    let mut s = ((s as usize) - align) as *const __m128i;
    let zero = _mm_set1_epi8(0);

    let x = {
        let r;
        asm!(
            "movdqa ({addr}), {dest}",
            addr = in(reg) s,
            dest = out(xmm_reg) r,
            options(att_syntax, nostack),
        );
        r
    };
    let cmp = _mm_movemask_epi8(_mm_cmpeq_epi8(x, zero)) >> align;

    if cmp != 0 {
        return n + cmp.trailing_zeros() as usize;
    }

    n += 16 - align;
    s = s.add(1);

    loop {
        let x = {
            let r;
            asm!(
                "movdqa ({addr}), {dest}",
                addr = in(reg) s,
                dest = out(xmm_reg) r,
                options(att_syntax, nostack),
            );
            r
        };
        let cmp = _mm_movemask_epi8(_mm_cmpeq_epi8(x, zero)) as u32;
        if cmp == 0 {
            n += 16;
            s = s.add(1);
        } else {
            return n + cmp.trailing_zeros() as usize;
        }
    }
}

// Provided for scenarios like kernel development, where SSE might not
// be available.
#[cfg(not(target_feature = "sse2"))]
#[inline(always)]
pub unsafe fn c_string_length(mut s: *const core::ffi::c_char) -> usize {
    let mut n = 0;

    // Check bytes in steps of one until
    // either a zero byte is discovered or
    // pointer is aligned to an eight byte boundary.

    while s as usize & 7 != 0 {
        if *s == 0 {
            return n;
        }
        n += 1;
        s = s.add(1);
    }

    // Check bytes in steps of eight until a zero
    // byte is discovered.

    let mut s = s as *const u64;

    loop {
        let mut cs = {
            let r: u64;
            asm!(
                "mov ({addr}), {dest}",
                addr = in(reg) s,
                dest = out(reg) r,
                options(att_syntax, nostack),
            );
            r
        };
        // Detect if a word has a zero byte, taken from
        // https://graphics.stanford.edu/~seander/bithacks.html
        if (cs.wrapping_sub(0x0101010101010101) & !cs & 0x8080808080808080) != 0 {
            loop {
                if cs & 255 == 0 {
                    return n;
                } else {
                    cs >>= 8;
                    n += 1;
                }
            }
        } else {
            n += 8;
            s = s.add(1);
        }
    }
}

/// Determine optimal parameters for a `rep` instruction.
fn rep_param(dest: *mut u8, mut count: usize) -> (usize, usize, usize) {
    // Unaligned writes are still slow on modern processors, so align the destination address.
    let pre_byte_count = ((8 - (dest as usize & 0b111)) & 0b111).min(count);
    count -= pre_byte_count;
    let qword_count = count >> 3;
    let byte_count = count & 0b111;
    (pre_byte_count, qword_count, byte_count)
}