1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
//! Slow, fallback algorithm for cases the Eisel-Lemire algorithm cannot round.
use crate::num::dec2flt::common::BiasedFp;
use crate::num::dec2flt::decimal::{parse_decimal, Decimal};
use crate::num::dec2flt::float::RawFloat;
/// Parse the significant digits and biased, binary exponent of a float.
///
/// This is a fallback algorithm that uses a big-integer representation
/// of the float, and therefore is considerably slower than faster
/// approximations. However, it will always determine how to round
/// the significant digits to the nearest machine float, allowing
/// use to handle near half-way cases.
///
/// Near half-way cases are halfway between two consecutive machine floats.
/// For example, the float `16777217.0` has a bitwise representation of
/// `100000000000000000000000 1`. Rounding to a single-precision float,
/// the trailing `1` is truncated. Using round-nearest, tie-even, any
/// value above `16777217.0` must be rounded up to `16777218.0`, while
/// any value before or equal to `16777217.0` must be rounded down
/// to `16777216.0`. These near-halfway conversions therefore may require
/// a large number of digits to unambiguously determine how to round.
///
/// The algorithms described here are based on "Processing Long Numbers Quickly",
/// available here: <https://arxiv.org/pdf/2101.11408.pdf#section.11>.
pub(crate) fn parse_long_mantissa<F: RawFloat>(s: &[u8]) -> BiasedFp {
const MAX_SHIFT: usize = 60;
const NUM_POWERS: usize = 19;
const POWERS: [u8; 19] =
[0, 3, 6, 9, 13, 16, 19, 23, 26, 29, 33, 36, 39, 43, 46, 49, 53, 56, 59];
let get_shift = |n| {
if n < NUM_POWERS { POWERS[n] as usize } else { MAX_SHIFT }
};
let fp_zero = BiasedFp::zero_pow2(0);
let fp_inf = BiasedFp::zero_pow2(F::INFINITE_POWER);
let mut d = parse_decimal(s);
// Short-circuit if the value can only be a literal 0 or infinity.
if d.num_digits == 0 || d.decimal_point < -324 {
return fp_zero;
} else if d.decimal_point >= 310 {
return fp_inf;
}
let mut exp2 = 0_i32;
// Shift right toward (1/2 ... 1].
while d.decimal_point > 0 {
let n = d.decimal_point as usize;
let shift = get_shift(n);
d.right_shift(shift);
if d.decimal_point < -Decimal::DECIMAL_POINT_RANGE {
return fp_zero;
}
exp2 += shift as i32;
}
// Shift left toward (1/2 ... 1].
while d.decimal_point <= 0 {
let shift = if d.decimal_point == 0 {
match d.digits[0] {
digit if digit >= 5 => break,
0 | 1 => 2,
_ => 1,
}
} else {
get_shift((-d.decimal_point) as _)
};
d.left_shift(shift);
if d.decimal_point > Decimal::DECIMAL_POINT_RANGE {
return fp_inf;
}
exp2 -= shift as i32;
}
// We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2].
exp2 -= 1;
while (F::MINIMUM_EXPONENT + 1) > exp2 {
let mut n = ((F::MINIMUM_EXPONENT + 1) - exp2) as usize;
if n > MAX_SHIFT {
n = MAX_SHIFT;
}
d.right_shift(n);
exp2 += n as i32;
}
if (exp2 - F::MINIMUM_EXPONENT) >= F::INFINITE_POWER {
return fp_inf;
}
// Shift the decimal to the hidden bit, and then round the value
// to get the high mantissa+1 bits.
d.left_shift(F::MANTISSA_EXPLICIT_BITS + 1);
let mut mantissa = d.round();
if mantissa >= (1_u64 << (F::MANTISSA_EXPLICIT_BITS + 1)) {
// Rounding up overflowed to the carry bit, need to
// shift back to the hidden bit.
d.right_shift(1);
exp2 += 1;
mantissa = d.round();
if (exp2 - F::MINIMUM_EXPONENT) >= F::INFINITE_POWER {
return fp_inf;
}
}
let mut power2 = exp2 - F::MINIMUM_EXPONENT;
if mantissa < (1_u64 << F::MANTISSA_EXPLICIT_BITS) {
power2 -= 1;
}
// Zero out all the bits above the explicit mantissa bits.
mantissa &= (1_u64 << F::MANTISSA_EXPLICIT_BITS) - 1;
BiasedFp { f: mantissa, e: power2 }
}