1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
/// Creates an unsigned division function that uses binary long division, designed for
/// computer architectures without division instructions. These functions have good performance for
/// microarchitectures with large branch miss penalties and architectures without the ability to
/// predicate instructions. For architectures with predicated instructions, one of the algorithms
/// described in the documentation of these functions probably has higher performance, and a custom
/// assembly routine should be used instead.
#[allow(unused_macros)]
macro_rules! impl_binary_long {
(
$fn:ident, // name of the unsigned division function
$zero_div_fn:ident, // function called when division by zero is attempted
$normalization_shift:ident, // function for finding the normalization shift
$n:tt, // the number of bits in a $iX or $uX
$uX:ident, // unsigned integer type for the inputs and outputs of `$fn`
$iX:ident // signed integer type with same bitwidth as `$uX`
) => {
/// Computes the quotient and remainder of `duo` divided by `div` and returns them as a
/// tuple.
pub fn $fn(duo: $uX, div: $uX) -> ($uX, $uX) {
let mut duo = duo;
// handle edge cases before calling `$normalization_shift`
if div == 0 {
$zero_div_fn()
}
if duo < div {
return (0, duo);
}
// There are many variations of binary division algorithm that could be used. This
// documentation gives a tour of different methods so that future readers wanting to
// optimize further do not have to painstakingly derive them. The SWAR variation is
// especially hard to understand without reading the less convoluted methods first.
// You may notice that a `duo < div_original` check is included in many these
// algorithms. A critical optimization that many algorithms miss is handling of
// quotients that will turn out to have many trailing zeros or many leading zeros. This
// happens in cases of exact or close-to-exact divisions, divisions by power of two, and
// in cases where the quotient is small. The `duo < div_original` check handles these
// cases of early returns and ends up replacing other kinds of mundane checks that
// normally terminate a binary division algorithm.
//
// Something you may see in other algorithms that is not special-cased here is checks
// for division by powers of two. The `duo < div_original` check handles this case and
// more, however it can be checked up front before the bisection using the
// `((div > 0) && ((div & (div - 1)) == 0))` trick. This is not special-cased because
// compilers should handle most cases where divisions by power of two occur, and we do
// not want to add on a few cycles for every division operation just to save a few
// cycles rarely.
// The following example is the most straightforward translation from the way binary
// long division is typically visualized:
// Dividing 178u8 (0b10110010) by 6u8 (0b110). `div` is shifted left by 5, according to
// the result from `$normalization_shift(duo, div, false)`.
//
// Step 0: `sub` is negative, so there is not full normalization, so no `quo` bit is set
// and `duo` is kept unchanged.
// duo:10110010, div_shifted:11000000, sub:11110010, quo:00000000, shl:5
//
// Step 1: `sub` is positive, set a `quo` bit and update `duo` for next step.
// duo:10110010, div_shifted:01100000, sub:01010010, quo:00010000, shl:4
//
// Step 2: Continue based on `sub`. The `quo` bits start accumulating.
// duo:01010010, div_shifted:00110000, sub:00100010, quo:00011000, shl:3
// duo:00100010, div_shifted:00011000, sub:00001010, quo:00011100, shl:2
// duo:00001010, div_shifted:00001100, sub:11111110, quo:00011100, shl:1
// duo:00001010, div_shifted:00000110, sub:00000100, quo:00011100, shl:0
// The `duo < div_original` check terminates the algorithm with the correct quotient of
// 29u8 and remainder of 4u8
/*
let div_original = div;
let mut shl = $normalization_shift(duo, div, false);
let mut quo = 0;
loop {
let div_shifted = div << shl;
let sub = duo.wrapping_sub(div_shifted);
// it is recommended to use `println!`s like this if functionality is unclear
/*
println!("duo:{:08b}, div_shifted:{:08b}, sub:{:08b}, quo:{:08b}, shl:{}",
duo,
div_shifted,
sub,
quo,
shl
);
*/
if 0 <= (sub as $iX) {
duo = sub;
quo += 1 << shl;
if duo < div_original {
// this branch is optional
return (quo, duo)
}
}
if shl == 0 {
return (quo, duo)
}
shl -= 1;
}
*/
// This restoring binary long division algorithm reduces the number of operations
// overall via:
// - `pow` can be shifted right instead of recalculating from `shl`
// - starting `div` shifted left and shifting it right for each step instead of
// recalculating from `shl`
// - The `duo < div_original` branch is used to terminate the algorithm instead of the
// `shl == 0` branch. This check is strong enough to prevent set bits of `pow` and
// `div` from being shifted off the end. This check also only occurs on half of steps
// on average, since it is behind the `(sub as $iX) >= 0` branch.
// - `shl` is now not needed by any aspect of of the loop and thus only 3 variables are
// being updated between steps
//
// There are many variations of this algorithm, but this encompases the largest number
// of architectures and does not rely on carry flags, add-with-carry, or SWAR
// complications to be decently fast.
/*
let div_original = div;
let shl = $normalization_shift(duo, div, false);
let mut div: $uX = div << shl;
let mut pow: $uX = 1 << shl;
let mut quo: $uX = 0;
loop {
let sub = duo.wrapping_sub(div);
if 0 <= (sub as $iX) {
duo = sub;
quo |= pow;
if duo < div_original {
return (quo, duo)
}
}
div >>= 1;
pow >>= 1;
}
*/
// If the architecture has flags and predicated arithmetic instructions, it is possible
// to do binary long division without branching and in only 3 or 4 instructions. This is
// a variation of a 3 instruction central loop from
// http://www.chiark.greenend.org.uk/~theom/riscos/docs/ultimate/a252div.txt.
//
// What allows doing division in only 3 instructions is realizing that instead of
// keeping `duo` in place and shifting `div` right to align bits, `div` can be kept in
// place and `duo` can be shifted left. This means `div` does not have to be updated,
// but causes edge case problems and makes `duo < div_original` tests harder. Some
// architectures have an option to shift an argument in an arithmetic operation, which
// means `duo` can be shifted left and subtracted from in one instruction. The other two
// instructions are updating `quo` and undoing the subtraction if it turns out things
// were not normalized.
/*
// Perform one binary long division step on the already normalized arguments, because
// the main. Note that this does a full normalization since the central loop needs
// `duo.leading_zeros()` to be at least 1 more than `div.leading_zeros()`. The original
// variation only did normalization to the nearest 4 steps, but this makes handling edge
// cases much harder. We do a full normalization and perform a binary long division
// step. In the edge case where the msbs of `duo` and `div` are set, it clears the msb
// of `duo`, then the edge case handler shifts `div` right and does another long
// division step to always insure `duo.leading_zeros() + 1 >= div.leading_zeros()`.
let div_original = div;
let mut shl = $normalization_shift(duo, div, true);
let mut div: $uX = (div << shl);
let mut quo: $uX = 1;
duo = duo.wrapping_sub(div);
if duo < div_original {
return (1 << shl, duo);
}
let div_neg: $uX;
if (div as $iX) < 0 {
// A very ugly edge case where the most significant bit of `div` is set (after
// shifting to match `duo` when its most significant bit is at the sign bit), which
// leads to the sign bit of `div_neg` being cut off and carries not happening when
// they should. This branch performs a long division step that keeps `duo` in place
// and shifts `div` down.
div >>= 1;
div_neg = div.wrapping_neg();
let (sub, carry) = duo.overflowing_add(div_neg);
duo = sub;
quo = quo.wrapping_add(quo).wrapping_add(carry as $uX);
if !carry {
duo = duo.wrapping_add(div);
}
shl -= 1;
} else {
div_neg = div.wrapping_neg();
}
// The add-with-carry that updates `quo` needs to have the carry set when a normalized
// subtract happens. Using `duo.wrapping_shl(1).overflowing_sub(div)` to do the
// subtraction generates a carry when an unnormalized subtract happens, which is the
// opposite of what we want. Instead, we use
// `duo.wrapping_shl(1).overflowing_add(div_neg)`, where `div_neg` is negative `div`.
let mut i = shl;
loop {
if i == 0 {
break;
}
i -= 1;
// `ADDS duo, div, duo, LSL #1`
// (add `div` to `duo << 1` and set flags)
let (sub, carry) = duo.wrapping_shl(1).overflowing_add(div_neg);
duo = sub;
// `ADC quo, quo, quo`
// (add with carry). Effectively shifts `quo` left by 1 and sets the least
// significant bit to the carry.
quo = quo.wrapping_add(quo).wrapping_add(carry as $uX);
// `ADDCC duo, duo, div`
// (add if carry clear). Undoes the subtraction if no carry was generated.
if !carry {
duo = duo.wrapping_add(div);
}
}
return (quo, duo >> shl);
*/
// This is the SWAR (SIMD within in a register) restoring division algorithm.
// This combines several ideas of the above algorithms:
// - If `duo` is shifted left instead of shifting `div` right like in the 3 instruction
// restoring division algorithm, some architectures can do the shifting and
// subtraction step in one instruction.
// - `quo` can be constructed by adding powers-of-two to it or shifting it left by one
// and adding one.
// - Every time `duo` is shifted left, there is another unused 0 bit shifted into the
// LSB, so what if we use those bits to store `quo`?
// Through a complex setup, it is possible to manage `duo` and `quo` in the same
// register, and perform one step with 2 or 3 instructions. The only major downsides are
// that there is significant setup (it is only saves instructions if `shl` is
// approximately more than 4), `duo < div_original` checks are impractical once SWAR is
// initiated, and the number of division steps taken has to be exact (we cannot do more
// division steps than `shl`, because it introduces edge cases where quotient bits in
// `duo` start to collide with the real part of `div`.
/*
// first step. The quotient bit is stored in `quo` for now
let div_original = div;
let mut shl = $normalization_shift(duo, div, true);
let mut div: $uX = (div << shl);
duo = duo.wrapping_sub(div);
let mut quo: $uX = 1 << shl;
if duo < div_original {
return (quo, duo);
}
let mask: $uX;
if (div as $iX) < 0 {
// deal with same edge case as the 3 instruction restoring division algorithm, but
// the quotient bit from this step also has to be stored in `quo`
div >>= 1;
shl -= 1;
let tmp = 1 << shl;
mask = tmp - 1;
let sub = duo.wrapping_sub(div);
if (sub as $iX) >= 0 {
// restore
duo = sub;
quo |= tmp;
}
if duo < div_original {
return (quo, duo);
}
} else {
mask = quo - 1;
}
// There is now room for quotient bits in `duo`.
// Note that `div` is already shifted left and has `shl` unset bits. We subtract 1 from
// `div` and end up with the subset of `shl` bits being all being set. This subset acts
// just like a two's complement negative one. The subset of `div` containing the divisor
// had 1 subtracted from it, but a carry will always be generated from the `shl` subset
// as long as the quotient stays positive.
//
// When the modified `div` is subtracted from `duo.wrapping_shl(1)`, the `shl` subset
// adds a quotient bit to the least significant bit.
// For example, 89 (0b01011001) divided by 3 (0b11):
//
// shl:4, div:0b00110000
// first step:
// duo:0b01011001
// + div_neg:0b11010000
// ____________________
// 0b00101001
// quo is set to 0b00010000 and mask is set to 0b00001111 for later
//
// 1 is subtracted from `div`. I will differentiate the `shl` part of `div` and the
// quotient part of `duo` with `^`s.
// chars.
// div:0b00110000
// ^^^^
// + 0b11111111
// ________________
// 0b00101111
// ^^^^
// div_neg:0b11010001
//
// first SWAR step:
// duo_shl1:0b01010010
// ^
// + div_neg:0b11010001
// ____________________
// 0b00100011
// ^
// second:
// duo_shl1:0b01000110
// ^^
// + div_neg:0b11010001
// ____________________
// 0b00010111
// ^^
// third:
// duo_shl1:0b00101110
// ^^^
// + div_neg:0b11010001
// ____________________
// 0b11111111
// ^^^
// 3 steps resulted in the quotient with 3 set bits as expected, but currently the real
// part of `duo` is negative and the third step was an unnormalized step. The restore
// branch then restores `duo`. Note that the restore branch does not shift `duo` left.
//
// duo:0b11111111
// ^^^
// + div:0b00101111
// ^^^^
// ________________
// 0b00101110
// ^^^
// `duo` is now back in the `duo_shl1` state it was at in the the third step, with an
// unset quotient bit.
//
// final step (`shl` was 4, so exactly 4 steps must be taken)
// duo_shl1:0b01011100
// ^^^^
// + div_neg:0b11010001
// ____________________
// 0b00101101
// ^^^^
// The quotient includes the `^` bits added with the `quo` bits from the beginning that
// contained the first step and potential edge case step,
// `quo:0b00010000 + (duo:0b00101101 & mask:0b00001111) == 0b00011101 == 29u8`.
// The remainder is the bits remaining in `duo` that are not part of the quotient bits,
// `duo:0b00101101 >> shl == 0b0010 == 2u8`.
let div: $uX = div.wrapping_sub(1);
let mut i = shl;
loop {
if i == 0 {
break;
}
i -= 1;
duo = duo.wrapping_shl(1).wrapping_sub(div);
if (duo as $iX) < 0 {
// restore
duo = duo.wrapping_add(div);
}
}
// unpack the results of SWAR
return ((duo & mask) | quo, duo >> shl);
*/
// The problem with the conditional restoring SWAR algorithm above is that, in practice,
// it requires assembly code to bring out its full unrolled potential (It seems that
// LLVM can't use unrolled conditionals optimally and ends up erasing all the benefit
// that my algorithm intends. On architectures without predicated instructions, the code
// gen is especially bad. We need a default software division algorithm that is
// guaranteed to get decent code gen for the central loop.
// For non-SWAR algorithms, there is a way to do binary long division without
// predication or even branching. This involves creating a mask from the sign bit and
// performing different kinds of steps using that.
/*
let shl = $normalization_shift(duo, div, true);
let mut div: $uX = div << shl;
let mut pow: $uX = 1 << shl;
let mut quo: $uX = 0;
loop {
let sub = duo.wrapping_sub(div);
let sign_mask = !((sub as $iX).wrapping_shr($n - 1) as $uX);
duo -= div & sign_mask;
quo |= pow & sign_mask;
div >>= 1;
pow >>= 1;
if pow == 0 {
break;
}
}
return (quo, duo);
*/
// However, it requires about 4 extra operations (smearing the sign bit, negating the
// mask, and applying the mask twice) on top of the operations done by the actual
// algorithm. With SWAR however, just 2 extra operations are needed, making it
// practical and even the most optimal algorithm for some architectures.
// What we do is use custom assembly for predicated architectures that need software
// division, and for the default algorithm use a mask based restoring SWAR algorithm
// without conditionals or branches. On almost all architectures, this Rust code is
// guaranteed to compile down to 5 assembly instructions or less for each step, and LLVM
// will unroll it in a decent way.
// standard opening for SWAR algorithm with first step and edge case handling
let div_original = div;
let mut shl = $normalization_shift(duo, div, true);
let mut div: $uX = (div << shl);
duo = duo.wrapping_sub(div);
let mut quo: $uX = 1 << shl;
if duo < div_original {
return (quo, duo);
}
let mask: $uX;
if (div as $iX) < 0 {
div >>= 1;
shl -= 1;
let tmp = 1 << shl;
mask = tmp - 1;
let sub = duo.wrapping_sub(div);
if (sub as $iX) >= 0 {
duo = sub;
quo |= tmp;
}
if duo < div_original {
return (quo, duo);
}
} else {
mask = quo - 1;
}
// central loop
div = div.wrapping_sub(1);
let mut i = shl;
loop {
if i == 0 {
break;
}
i -= 1;
// shift left 1 and subtract
duo = duo.wrapping_shl(1).wrapping_sub(div);
// create mask
let mask = (duo as $iX).wrapping_shr($n - 1) as $uX;
// restore
duo = duo.wrapping_add(div & mask);
}
// unpack
return ((duo & mask) | quo, duo >> shl);
// miscellanious binary long division algorithms that might be better for specific
// architectures
// Another kind of long division uses an interesting fact that `div` and `pow` can be
// negated when `duo` is negative to perform a "negated" division step that works in
// place of any normalization mechanism. This is a non-restoring division algorithm that
// is very similar to the non-restoring division algorithms that can be found on the
// internet, except there is only one test for `duo < 0`. The subtraction from `quo` can
// be viewed as shifting the least significant set bit right (e.x. if we enter a series
// of negated binary long division steps starting with `quo == 0b1011_0000` and
// `pow == 0b0000_1000`, `quo` will progress like this: 0b1010_1000, 0b1010_0100,
// 0b1010_0010, 0b1010_0001).
/*
let div_original = div;
let shl = $normalization_shift(duo, div, true);
let mut div: $uX = (div << shl);
let mut pow: $uX = 1 << shl;
let mut quo: $uX = pow;
duo = duo.wrapping_sub(div);
if duo < div_original {
return (quo, duo);
}
div >>= 1;
pow >>= 1;
loop {
if (duo as $iX) < 0 {
// Negated binary long division step.
duo = duo.wrapping_add(div);
quo = quo.wrapping_sub(pow);
} else {
// Normal long division step.
if duo < div_original {
return (quo, duo)
}
duo = duo.wrapping_sub(div);
quo = quo.wrapping_add(pow);
}
pow >>= 1;
div >>= 1;
}
*/
// This is the Nonrestoring SWAR algorithm, combining the nonrestoring algorithm with
// SWAR techniques that makes the only difference between steps be negation of `div`.
// If there was an architecture with an instruction that negated inputs to an adder
// based on conditionals, and in place shifting (or a three input addition operation
// that can have `duo` as two of the inputs to effectively shift it left by 1), then a
// single instruction central loop is possible. Microarchitectures often have inputs to
// their ALU that can invert the arguments and carry in of adders, but the architectures
// unfortunately do not have an instruction to dynamically invert this input based on
// conditionals.
/*
// SWAR opening
let div_original = div;
let mut shl = $normalization_shift(duo, div, true);
let mut div: $uX = (div << shl);
duo = duo.wrapping_sub(div);
let mut quo: $uX = 1 << shl;
if duo < div_original {
return (quo, duo);
}
let mask: $uX;
if (div as $iX) < 0 {
div >>= 1;
shl -= 1;
let tmp = 1 << shl;
let sub = duo.wrapping_sub(div);
if (sub as $iX) >= 0 {
// restore
duo = sub;
quo |= tmp;
}
if duo < div_original {
return (quo, duo);
}
mask = tmp - 1;
} else {
mask = quo - 1;
}
// central loop
let div: $uX = div.wrapping_sub(1);
let mut i = shl;
loop {
if i == 0 {
break;
}
i -= 1;
// note: the `wrapping_shl(1)` can be factored out, but would require another
// restoring division step to prevent `(duo as $iX)` from overflowing
if (duo as $iX) < 0 {
// Negated binary long division step.
duo = duo.wrapping_shl(1).wrapping_add(div);
} else {
// Normal long division step.
duo = duo.wrapping_shl(1).wrapping_sub(div);
}
}
if (duo as $iX) < 0 {
// Restore. This was not needed in the original nonrestoring algorithm because of
// the `duo < div_original` checks.
duo = duo.wrapping_add(div);
}
// unpack
return ((duo & mask) | quo, duo >> shl);
*/
}
};
}