1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
// The functions are complex with many branches, and explicit
// `return`s makes it clear where function exit points are
#![allow(clippy::needless_return)]

use float::Float;
use int::{CastInto, DInt, HInt, Int};

fn div32<F: Float>(a: F, b: F) -> F
where
    u32: CastInto<F::Int>,
    F::Int: CastInto<u32>,
    i32: CastInto<F::Int>,
    F::Int: CastInto<i32>,
    F::Int: HInt,
    <F as Float>::Int: core::ops::Mul,
{
    const NUMBER_OF_HALF_ITERATIONS: usize = 0;
    const NUMBER_OF_FULL_ITERATIONS: usize = 3;
    const USE_NATIVE_FULL_ITERATIONS: bool = true;

    let one = F::Int::ONE;
    let zero = F::Int::ZERO;
    let hw = F::BITS / 2;
    let lo_mask = u32::MAX >> hw;

    let significand_bits = F::SIGNIFICAND_BITS;
    let max_exponent = F::EXPONENT_MAX;

    let exponent_bias = F::EXPONENT_BIAS;

    let implicit_bit = F::IMPLICIT_BIT;
    let significand_mask = F::SIGNIFICAND_MASK;
    let sign_bit = F::SIGN_MASK as F::Int;
    let abs_mask = sign_bit - one;
    let exponent_mask = F::EXPONENT_MASK;
    let inf_rep = exponent_mask;
    let quiet_bit = implicit_bit >> 1;
    let qnan_rep = exponent_mask | quiet_bit;

    #[inline(always)]
    fn negate_u32(a: u32) -> u32 {
        (<i32>::wrapping_neg(a as i32)) as u32
    }

    let a_rep = a.repr();
    let b_rep = b.repr();

    let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
    let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
    let quotient_sign = (a_rep ^ b_rep) & sign_bit;

    let mut a_significand = a_rep & significand_mask;
    let mut b_significand = b_rep & significand_mask;
    let mut scale = 0;

    // Detect if a or b is zero, denormal, infinity, or NaN.
    if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
        || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
    {
        let a_abs = a_rep & abs_mask;
        let b_abs = b_rep & abs_mask;

        // NaN / anything = qNaN
        if a_abs > inf_rep {
            return F::from_repr(a_rep | quiet_bit);
        }
        // anything / NaN = qNaN
        if b_abs > inf_rep {
            return F::from_repr(b_rep | quiet_bit);
        }

        if a_abs == inf_rep {
            if b_abs == inf_rep {
                // infinity / infinity = NaN
                return F::from_repr(qnan_rep);
            } else {
                // infinity / anything else = +/- infinity
                return F::from_repr(a_abs | quotient_sign);
            }
        }

        // anything else / infinity = +/- 0
        if b_abs == inf_rep {
            return F::from_repr(quotient_sign);
        }

        if a_abs == zero {
            if b_abs == zero {
                // zero / zero = NaN
                return F::from_repr(qnan_rep);
            } else {
                // zero / anything else = +/- zero
                return F::from_repr(quotient_sign);
            }
        }

        // anything else / zero = +/- infinity
        if b_abs == zero {
            return F::from_repr(inf_rep | quotient_sign);
        }

        // one or both of a or b is denormal, the other (if applicable) is a
        // normal number.  Renormalize one or both of a and b, and set scale to
        // include the necessary exponent adjustment.
        if a_abs < implicit_bit {
            let (exponent, significand) = F::normalize(a_significand);
            scale += exponent;
            a_significand = significand;
        }

        if b_abs < implicit_bit {
            let (exponent, significand) = F::normalize(b_significand);
            scale -= exponent;
            b_significand = significand;
        }
    }

    // Set the implicit significand bit.  If we fell through from the
    // denormal path it was already set by normalize( ), but setting it twice
    // won't hurt anything.
    a_significand |= implicit_bit;
    b_significand |= implicit_bit;

    let written_exponent: i32 = CastInto::<u32>::cast(
        a_exponent
            .wrapping_sub(b_exponent)
            .wrapping_add(scale.cast()),
    )
    .wrapping_add(exponent_bias) as i32;
    let b_uq1 = b_significand << (F::BITS - significand_bits - 1);

    // Align the significand of b as a UQ1.(n-1) fixed-point number in the range
    // [1.0, 2.0) and get a UQ0.n approximate reciprocal using a small minimax
    // polynomial approximation: x0 = 3/4 + 1/sqrt(2) - b/2.
    // The max error for this approximation is achieved at endpoints, so
    //   abs(x0(b) - 1/b) <= abs(x0(1) - 1/1) = 3/4 - 1/sqrt(2) = 0.04289...,
    // which is about 4.5 bits.
    // The initial approximation is between x0(1.0) = 0.9571... and x0(2.0) = 0.4571...

    // Then, refine the reciprocal estimate using a quadratically converging
    // Newton-Raphson iteration:
    //     x_{n+1} = x_n * (2 - x_n * b)
    //
    // Let b be the original divisor considered "in infinite precision" and
    // obtained from IEEE754 representation of function argument (with the
    // implicit bit set). Corresponds to rep_t-sized b_UQ1 represented in
    // UQ1.(W-1).
    //
    // Let b_hw be an infinitely precise number obtained from the highest (HW-1)
    // bits of divisor significand (with the implicit bit set). Corresponds to
    // half_rep_t-sized b_UQ1_hw represented in UQ1.(HW-1) that is a **truncated**
    // version of b_UQ1.
    //
    // Let e_n := x_n - 1/b_hw
    //     E_n := x_n - 1/b
    // abs(E_n) <= abs(e_n) + (1/b_hw - 1/b)
    //           = abs(e_n) + (b - b_hw) / (b*b_hw)
    //          <= abs(e_n) + 2 * 2^-HW

    // rep_t-sized iterations may be slower than the corresponding half-width
    // variant depending on the handware and whether single/double/quad precision
    // is selected.
    // NB: Using half-width iterations increases computation errors due to
    // rounding, so error estimations have to be computed taking the selected
    // mode into account!

    #[allow(clippy::absurd_extreme_comparisons)]
    let mut x_uq0 = if NUMBER_OF_HALF_ITERATIONS > 0 {
        // Starting with (n-1) half-width iterations
        let b_uq1_hw: u16 =
            (CastInto::<u32>::cast(b_significand) >> (significand_bits + 1 - hw)) as u16;

        // C is (3/4 + 1/sqrt(2)) - 1 truncated to W0 fractional bits as UQ0.HW
        // with W0 being either 16 or 32 and W0 <= HW.
        // That is, C is the aforementioned 3/4 + 1/sqrt(2) constant (from which
        // b/2 is subtracted to obtain x0) wrapped to [0, 1) range.

        // HW is at least 32. Shifting into the highest bits if needed.
        let c_hw = (0x7504_u32 as u16).wrapping_shl(hw.wrapping_sub(32));

        // b >= 1, thus an upper bound for 3/4 + 1/sqrt(2) - b/2 is about 0.9572,
        // so x0 fits to UQ0.HW without wrapping.
        let x_uq0_hw: u16 = {
            let mut x_uq0_hw: u16 = c_hw.wrapping_sub(b_uq1_hw /* exact b_hw/2 as UQ0.HW */);
            // An e_0 error is comprised of errors due to
            // * x0 being an inherently imprecise first approximation of 1/b_hw
            // * C_hw being some (irrational) number **truncated** to W0 bits
            // Please note that e_0 is calculated against the infinitely precise
            // reciprocal of b_hw (that is, **truncated** version of b).
            //
            // e_0 <= 3/4 - 1/sqrt(2) + 2^-W0

            // By construction, 1 <= b < 2
            // f(x)  = x * (2 - b*x) = 2*x - b*x^2
            // f'(x) = 2 * (1 - b*x)
            //
            // On the [0, 1] interval, f(0)   = 0,
            // then it increses until  f(1/b) = 1 / b, maximum on (0, 1),
            // then it decreses to     f(1)   = 2 - b
            //
            // Let g(x) = x - f(x) = b*x^2 - x.
            // On (0, 1/b), g(x) < 0 <=> f(x) > x
            // On (1/b, 1], g(x) > 0 <=> f(x) < x
            //
            // For half-width iterations, b_hw is used instead of b.
            #[allow(clippy::reversed_empty_ranges)]
            for _ in 0..NUMBER_OF_HALF_ITERATIONS {
                // corr_UQ1_hw can be **larger** than 2 - b_hw*x by at most 1*Ulp
                // of corr_UQ1_hw.
                // "0.0 - (...)" is equivalent to "2.0 - (...)" in UQ1.(HW-1).
                // On the other hand, corr_UQ1_hw should not overflow from 2.0 to 0.0 provided
                // no overflow occurred earlier: ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW) is
                // expected to be strictly positive because b_UQ1_hw has its highest bit set
                // and x_UQ0_hw should be rather large (it converges to 1/2 < 1/b_hw <= 1).
                let corr_uq1_hw: u16 =
                    0.wrapping_sub((x_uq0_hw as u32).wrapping_mul(b_uq1_hw.cast()) >> hw) as u16;

                // Now, we should multiply UQ0.HW and UQ1.(HW-1) numbers, naturally
                // obtaining an UQ1.(HW-1) number and proving its highest bit could be
                // considered to be 0 to be able to represent it in UQ0.HW.
                // From the above analysis of f(x), if corr_UQ1_hw would be represented
                // without any intermediate loss of precision (that is, in twice_rep_t)
                // x_UQ0_hw could be at most [1.]000... if b_hw is exactly 1.0 and strictly
                // less otherwise. On the other hand, to obtain [1.]000..., one have to pass
                // 1/b_hw == 1.0 to f(x), so this cannot occur at all without overflow (due
                // to 1.0 being not representable as UQ0.HW).
                // The fact corr_UQ1_hw was virtually round up (due to result of
                // multiplication being **first** truncated, then negated - to improve
                // error estimations) can increase x_UQ0_hw by up to 2*Ulp of x_UQ0_hw.
                x_uq0_hw = ((x_uq0_hw as u32).wrapping_mul(corr_uq1_hw as u32) >> (hw - 1)) as u16;
                // Now, either no overflow occurred or x_UQ0_hw is 0 or 1 in its half_rep_t
                // representation. In the latter case, x_UQ0_hw will be either 0 or 1 after
                // any number of iterations, so just subtract 2 from the reciprocal
                // approximation after last iteration.

                // In infinite precision, with 0 <= eps1, eps2 <= U = 2^-HW:
                // corr_UQ1_hw = 2 - (1/b_hw + e_n) * b_hw + 2*eps1
                //             = 1 - e_n * b_hw + 2*eps1
                // x_UQ0_hw = (1/b_hw + e_n) * (1 - e_n*b_hw + 2*eps1) - eps2
                //          = 1/b_hw - e_n + 2*eps1/b_hw + e_n - e_n^2*b_hw + 2*e_n*eps1 - eps2
                //          = 1/b_hw + 2*eps1/b_hw - e_n^2*b_hw + 2*e_n*eps1 - eps2
                // e_{n+1} = -e_n^2*b_hw + 2*eps1/b_hw + 2*e_n*eps1 - eps2
                //         = 2*e_n*eps1 - (e_n^2*b_hw + eps2) + 2*eps1/b_hw
                //                        \------ >0 -------/   \-- >0 ---/
                // abs(e_{n+1}) <= 2*abs(e_n)*U + max(2*e_n^2 + U, 2 * U)
            }
            // For initial half-width iterations, U = 2^-HW
            // Let  abs(e_n)     <= u_n * U,
            // then abs(e_{n+1}) <= 2 * u_n * U^2 + max(2 * u_n^2 * U^2 + U, 2 * U)
            // u_{n+1} <= 2 * u_n * U + max(2 * u_n^2 * U + 1, 2)

            // Account for possible overflow (see above). For an overflow to occur for the
            // first time, for "ideal" corr_UQ1_hw (that is, without intermediate
            // truncation), the result of x_UQ0_hw * corr_UQ1_hw should be either maximum
            // value representable in UQ0.HW or less by 1. This means that 1/b_hw have to
            // be not below that value (see g(x) above), so it is safe to decrement just
            // once after the final iteration. On the other hand, an effective value of
            // divisor changes after this point (from b_hw to b), so adjust here.
            x_uq0_hw.wrapping_sub(1_u16)
        };

        // Error estimations for full-precision iterations are calculated just
        // as above, but with U := 2^-W and taking extra decrementing into account.
        // We need at least one such iteration.

        // Simulating operations on a twice_rep_t to perform a single final full-width
        // iteration. Using ad-hoc multiplication implementations to take advantage
        // of particular structure of operands.

        let blo: u32 = (CastInto::<u32>::cast(b_uq1)) & lo_mask;
        // x_UQ0 = x_UQ0_hw * 2^HW - 1
        // x_UQ0 * b_UQ1 = (x_UQ0_hw * 2^HW) * (b_UQ1_hw * 2^HW + blo) - b_UQ1
        //
        //   <--- higher half ---><--- lower half --->
        //   [x_UQ0_hw * b_UQ1_hw]
        // +            [  x_UQ0_hw *  blo  ]
        // -                      [      b_UQ1       ]
        // = [      result       ][.... discarded ...]
        let corr_uq1 = negate_u32(
            (x_uq0_hw as u32) * (b_uq1_hw as u32) + (((x_uq0_hw as u32) * (blo)) >> hw) - 1,
        ); // account for *possible* carry
        let lo_corr = corr_uq1 & lo_mask;
        let hi_corr = corr_uq1 >> hw;
        // x_UQ0 * corr_UQ1 = (x_UQ0_hw * 2^HW) * (hi_corr * 2^HW + lo_corr) - corr_UQ1
        let mut x_uq0: <F as Float>::Int = ((((x_uq0_hw as u32) * hi_corr) << 1)
            .wrapping_add(((x_uq0_hw as u32) * lo_corr) >> (hw - 1))
            .wrapping_sub(2))
        .cast(); // 1 to account for the highest bit of corr_UQ1 can be 1
                 // 1 to account for possible carry
                 // Just like the case of half-width iterations but with possibility
                 // of overflowing by one extra Ulp of x_UQ0.
        x_uq0 -= one;
        // ... and then traditional fixup by 2 should work

        // On error estimation:
        // abs(E_{N-1}) <=   (u_{N-1} + 2 /* due to conversion e_n -> E_n */) * 2^-HW
        //                 + (2^-HW + 2^-W))
        // abs(E_{N-1}) <= (u_{N-1} + 3.01) * 2^-HW

        // Then like for the half-width iterations:
        // With 0 <= eps1, eps2 < 2^-W
        // E_N  = 4 * E_{N-1} * eps1 - (E_{N-1}^2 * b + 4 * eps2) + 4 * eps1 / b
        // abs(E_N) <= 2^-W * [ 4 * abs(E_{N-1}) + max(2 * abs(E_{N-1})^2 * 2^W + 4, 8)) ]
        // abs(E_N) <= 2^-W * [ 4 * (u_{N-1} + 3.01) * 2^-HW + max(4 + 2 * (u_{N-1} + 3.01)^2, 8) ]
        x_uq0
    } else {
        // C is (3/4 + 1/sqrt(2)) - 1 truncated to 32 fractional bits as UQ0.n
        let c: <F as Float>::Int = (0x7504F333 << (F::BITS - 32)).cast();
        let x_uq0: <F as Float>::Int = c.wrapping_sub(b_uq1);
        // E_0 <= 3/4 - 1/sqrt(2) + 2 * 2^-32
        x_uq0
    };

    let mut x_uq0 = if USE_NATIVE_FULL_ITERATIONS {
        for _ in 0..NUMBER_OF_FULL_ITERATIONS {
            let corr_uq1: u32 = 0.wrapping_sub(
                ((CastInto::<u32>::cast(x_uq0) as u64) * (CastInto::<u32>::cast(b_uq1) as u64))
                    >> F::BITS,
            ) as u32;
            x_uq0 = ((((CastInto::<u32>::cast(x_uq0) as u64) * (corr_uq1 as u64)) >> (F::BITS - 1))
                as u32)
                .cast();
        }
        x_uq0
    } else {
        // not using native full iterations
        x_uq0
    };

    // Finally, account for possible overflow, as explained above.
    x_uq0 = x_uq0.wrapping_sub(2.cast());

    // u_n for different precisions (with N-1 half-width iterations):
    // W0 is the precision of C
    //   u_0 = (3/4 - 1/sqrt(2) + 2^-W0) * 2^HW

    // Estimated with bc:
    //   define half1(un) { return 2.0 * (un + un^2) / 2.0^hw + 1.0; }
    //   define half2(un) { return 2.0 * un / 2.0^hw + 2.0; }
    //   define full1(un) { return 4.0 * (un + 3.01) / 2.0^hw + 2.0 * (un + 3.01)^2 + 4.0; }
    //   define full2(un) { return 4.0 * (un + 3.01) / 2.0^hw + 8.0; }

    //             | f32 (0 + 3) | f32 (2 + 1)  | f64 (3 + 1)  | f128 (4 + 1)
    // u_0         | < 184224974 | < 2812.1     | < 184224974  | < 791240234244348797
    // u_1         | < 15804007  | < 242.7      | < 15804007   | < 67877681371350440
    // u_2         | < 116308    | < 2.81       | < 116308     | < 499533100252317
    // u_3         | < 7.31      |              | < 7.31       | < 27054456580
    // u_4         |             |              |              | < 80.4
    // Final (U_N) | same as u_3 | < 72         | < 218        | < 13920

    // Add 2 to U_N due to final decrement.

    let reciprocal_precision: <F as Float>::Int = 10.cast();

    // Suppose 1/b - P * 2^-W < x < 1/b + P * 2^-W
    let x_uq0 = x_uq0 - reciprocal_precision;
    // Now 1/b - (2*P) * 2^-W < x < 1/b
    // FIXME Is x_UQ0 still >= 0.5?

    let mut quotient: <F as Float>::Int = x_uq0.widen_mul(a_significand << 1).hi();
    // Now, a/b - 4*P * 2^-W < q < a/b for q=<quotient_UQ1:dummy> in UQ1.(SB+1+W).

    // quotient_UQ1 is in [0.5, 2.0) as UQ1.(SB+1),
    // adjust it to be in [1.0, 2.0) as UQ1.SB.
    let (mut residual, written_exponent) = if quotient < (implicit_bit << 1) {
        // Highest bit is 0, so just reinterpret quotient_UQ1 as UQ1.SB,
        // effectively doubling its value as well as its error estimation.
        let residual_lo = (a_significand << (significand_bits + 1)).wrapping_sub(
            (CastInto::<u32>::cast(quotient).wrapping_mul(CastInto::<u32>::cast(b_significand)))
                .cast(),
        );
        a_significand <<= 1;
        (residual_lo, written_exponent.wrapping_sub(1))
    } else {
        // Highest bit is 1 (the UQ1.(SB+1) value is in [1, 2)), convert it
        // to UQ1.SB by right shifting by 1. Least significant bit is omitted.
        quotient >>= 1;
        let residual_lo = (a_significand << significand_bits).wrapping_sub(
            (CastInto::<u32>::cast(quotient).wrapping_mul(CastInto::<u32>::cast(b_significand)))
                .cast(),
        );
        (residual_lo, written_exponent)
    };

    //drop mutability
    let quotient = quotient;

    // NB: residualLo is calculated above for the normal result case.
    //     It is re-computed on denormal path that is expected to be not so
    //     performance-sensitive.

    // Now, q cannot be greater than a/b and can differ by at most 8*P * 2^-W + 2^-SB
    // Each NextAfter() increments the floating point value by at least 2^-SB
    // (more, if exponent was incremented).
    // Different cases (<---> is of 2^-SB length, * = a/b that is shown as a midpoint):
    //   q
    //   |   | * |   |   |       |       |
    //       <--->      2^t
    //   |   |   |   |   |   *   |       |
    //               q
    // To require at most one NextAfter(), an error should be less than 1.5 * 2^-SB.
    //   (8*P) * 2^-W + 2^-SB < 1.5 * 2^-SB
    //   (8*P) * 2^-W         < 0.5 * 2^-SB
    //   P < 2^(W-4-SB)
    // Generally, for at most R NextAfter() to be enough,
    //   P < (2*R - 1) * 2^(W-4-SB)
    // For f32 (0+3): 10 < 32 (OK)
    // For f32 (2+1): 32 < 74 < 32 * 3, so two NextAfter() are required
    // For f64: 220 < 256 (OK)
    // For f128: 4096 * 3 < 13922 < 4096 * 5 (three NextAfter() are required)

    // If we have overflowed the exponent, return infinity
    if written_exponent >= max_exponent as i32 {
        return F::from_repr(inf_rep | quotient_sign);
    }

    // Now, quotient <= the correctly-rounded result
    // and may need taking NextAfter() up to 3 times (see error estimates above)
    // r = a - b * q
    let abs_result = if written_exponent > 0 {
        let mut ret = quotient & significand_mask;
        ret |= ((written_exponent as u32) << significand_bits).cast();
        residual <<= 1;
        ret
    } else {
        if (significand_bits as i32 + written_exponent) < 0 {
            return F::from_repr(quotient_sign);
        }
        let ret = quotient.wrapping_shr(negate_u32(CastInto::<u32>::cast(written_exponent)) + 1);
        residual = (CastInto::<u32>::cast(
            a_significand.wrapping_shl(
                significand_bits.wrapping_add(CastInto::<u32>::cast(written_exponent)),
            ),
        )
        .wrapping_sub(
            (CastInto::<u32>::cast(ret).wrapping_mul(CastInto::<u32>::cast(b_significand))) << 1,
        ))
        .cast();
        ret
    };
    // Round
    let abs_result = {
        residual += abs_result & one; // tie to even
                                      // The above line conditionally turns the below LT comparison into LTE

        if residual > b_significand {
            abs_result + one
        } else {
            abs_result
        }
    };
    F::from_repr(abs_result | quotient_sign)
}

fn div64<F: Float>(a: F, b: F) -> F
where
    u32: CastInto<F::Int>,
    F::Int: CastInto<u32>,
    i32: CastInto<F::Int>,
    F::Int: CastInto<i32>,
    u64: CastInto<F::Int>,
    F::Int: CastInto<u64>,
    i64: CastInto<F::Int>,
    F::Int: CastInto<i64>,
    F::Int: HInt,
{
    const NUMBER_OF_HALF_ITERATIONS: usize = 3;
    const NUMBER_OF_FULL_ITERATIONS: usize = 1;
    const USE_NATIVE_FULL_ITERATIONS: bool = false;

    let one = F::Int::ONE;
    let zero = F::Int::ZERO;
    let hw = F::BITS / 2;
    let lo_mask = u64::MAX >> hw;

    let significand_bits = F::SIGNIFICAND_BITS;
    let max_exponent = F::EXPONENT_MAX;

    let exponent_bias = F::EXPONENT_BIAS;

    let implicit_bit = F::IMPLICIT_BIT;
    let significand_mask = F::SIGNIFICAND_MASK;
    let sign_bit = F::SIGN_MASK as F::Int;
    let abs_mask = sign_bit - one;
    let exponent_mask = F::EXPONENT_MASK;
    let inf_rep = exponent_mask;
    let quiet_bit = implicit_bit >> 1;
    let qnan_rep = exponent_mask | quiet_bit;

    #[inline(always)]
    fn negate_u64(a: u64) -> u64 {
        (<i64>::wrapping_neg(a as i64)) as u64
    }

    let a_rep = a.repr();
    let b_rep = b.repr();

    let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
    let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
    let quotient_sign = (a_rep ^ b_rep) & sign_bit;

    let mut a_significand = a_rep & significand_mask;
    let mut b_significand = b_rep & significand_mask;
    let mut scale = 0;

    // Detect if a or b is zero, denormal, infinity, or NaN.
    if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
        || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
    {
        let a_abs = a_rep & abs_mask;
        let b_abs = b_rep & abs_mask;

        // NaN / anything = qNaN
        if a_abs > inf_rep {
            return F::from_repr(a_rep | quiet_bit);
        }
        // anything / NaN = qNaN
        if b_abs > inf_rep {
            return F::from_repr(b_rep | quiet_bit);
        }

        if a_abs == inf_rep {
            if b_abs == inf_rep {
                // infinity / infinity = NaN
                return F::from_repr(qnan_rep);
            } else {
                // infinity / anything else = +/- infinity
                return F::from_repr(a_abs | quotient_sign);
            }
        }

        // anything else / infinity = +/- 0
        if b_abs == inf_rep {
            return F::from_repr(quotient_sign);
        }

        if a_abs == zero {
            if b_abs == zero {
                // zero / zero = NaN
                return F::from_repr(qnan_rep);
            } else {
                // zero / anything else = +/- zero
                return F::from_repr(quotient_sign);
            }
        }

        // anything else / zero = +/- infinity
        if b_abs == zero {
            return F::from_repr(inf_rep | quotient_sign);
        }

        // one or both of a or b is denormal, the other (if applicable) is a
        // normal number.  Renormalize one or both of a and b, and set scale to
        // include the necessary exponent adjustment.
        if a_abs < implicit_bit {
            let (exponent, significand) = F::normalize(a_significand);
            scale += exponent;
            a_significand = significand;
        }

        if b_abs < implicit_bit {
            let (exponent, significand) = F::normalize(b_significand);
            scale -= exponent;
            b_significand = significand;
        }
    }

    // Set the implicit significand bit.  If we fell through from the
    // denormal path it was already set by normalize( ), but setting it twice
    // won't hurt anything.
    a_significand |= implicit_bit;
    b_significand |= implicit_bit;

    let written_exponent: i64 = CastInto::<u64>::cast(
        a_exponent
            .wrapping_sub(b_exponent)
            .wrapping_add(scale.cast()),
    )
    .wrapping_add(exponent_bias as u64) as i64;
    let b_uq1 = b_significand << (F::BITS - significand_bits - 1);

    // Align the significand of b as a UQ1.(n-1) fixed-point number in the range
    // [1.0, 2.0) and get a UQ0.n approximate reciprocal using a small minimax
    // polynomial approximation: x0 = 3/4 + 1/sqrt(2) - b/2.
    // The max error for this approximation is achieved at endpoints, so
    //   abs(x0(b) - 1/b) <= abs(x0(1) - 1/1) = 3/4 - 1/sqrt(2) = 0.04289...,
    // which is about 4.5 bits.
    // The initial approximation is between x0(1.0) = 0.9571... and x0(2.0) = 0.4571...

    // Then, refine the reciprocal estimate using a quadratically converging
    // Newton-Raphson iteration:
    //     x_{n+1} = x_n * (2 - x_n * b)
    //
    // Let b be the original divisor considered "in infinite precision" and
    // obtained from IEEE754 representation of function argument (with the
    // implicit bit set). Corresponds to rep_t-sized b_UQ1 represented in
    // UQ1.(W-1).
    //
    // Let b_hw be an infinitely precise number obtained from the highest (HW-1)
    // bits of divisor significand (with the implicit bit set). Corresponds to
    // half_rep_t-sized b_UQ1_hw represented in UQ1.(HW-1) that is a **truncated**
    // version of b_UQ1.
    //
    // Let e_n := x_n - 1/b_hw
    //     E_n := x_n - 1/b
    // abs(E_n) <= abs(e_n) + (1/b_hw - 1/b)
    //           = abs(e_n) + (b - b_hw) / (b*b_hw)
    //          <= abs(e_n) + 2 * 2^-HW

    // rep_t-sized iterations may be slower than the corresponding half-width
    // variant depending on the handware and whether single/double/quad precision
    // is selected.
    // NB: Using half-width iterations increases computation errors due to
    // rounding, so error estimations have to be computed taking the selected
    // mode into account!

    let mut x_uq0 = if NUMBER_OF_HALF_ITERATIONS > 0 {
        // Starting with (n-1) half-width iterations
        let b_uq1_hw: u32 =
            (CastInto::<u64>::cast(b_significand) >> (significand_bits + 1 - hw)) as u32;

        // C is (3/4 + 1/sqrt(2)) - 1 truncated to W0 fractional bits as UQ0.HW
        // with W0 being either 16 or 32 and W0 <= HW.
        // That is, C is the aforementioned 3/4 + 1/sqrt(2) constant (from which
        // b/2 is subtracted to obtain x0) wrapped to [0, 1) range.

        // HW is at least 32. Shifting into the highest bits if needed.
        let c_hw = (0x7504F333_u64 as u32).wrapping_shl(hw.wrapping_sub(32));

        // b >= 1, thus an upper bound for 3/4 + 1/sqrt(2) - b/2 is about 0.9572,
        // so x0 fits to UQ0.HW without wrapping.
        let x_uq0_hw: u32 = {
            let mut x_uq0_hw: u32 = c_hw.wrapping_sub(b_uq1_hw /* exact b_hw/2 as UQ0.HW */);
            // dbg!(x_uq0_hw);
            // An e_0 error is comprised of errors due to
            // * x0 being an inherently imprecise first approximation of 1/b_hw
            // * C_hw being some (irrational) number **truncated** to W0 bits
            // Please note that e_0 is calculated against the infinitely precise
            // reciprocal of b_hw (that is, **truncated** version of b).
            //
            // e_0 <= 3/4 - 1/sqrt(2) + 2^-W0

            // By construction, 1 <= b < 2
            // f(x)  = x * (2 - b*x) = 2*x - b*x^2
            // f'(x) = 2 * (1 - b*x)
            //
            // On the [0, 1] interval, f(0)   = 0,
            // then it increses until  f(1/b) = 1 / b, maximum on (0, 1),
            // then it decreses to     f(1)   = 2 - b
            //
            // Let g(x) = x - f(x) = b*x^2 - x.
            // On (0, 1/b), g(x) < 0 <=> f(x) > x
            // On (1/b, 1], g(x) > 0 <=> f(x) < x
            //
            // For half-width iterations, b_hw is used instead of b.
            for _ in 0..NUMBER_OF_HALF_ITERATIONS {
                // corr_UQ1_hw can be **larger** than 2 - b_hw*x by at most 1*Ulp
                // of corr_UQ1_hw.
                // "0.0 - (...)" is equivalent to "2.0 - (...)" in UQ1.(HW-1).
                // On the other hand, corr_UQ1_hw should not overflow from 2.0 to 0.0 provided
                // no overflow occurred earlier: ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW) is
                // expected to be strictly positive because b_UQ1_hw has its highest bit set
                // and x_UQ0_hw should be rather large (it converges to 1/2 < 1/b_hw <= 1).
                let corr_uq1_hw: u32 =
                    0.wrapping_sub(((x_uq0_hw as u64).wrapping_mul(b_uq1_hw as u64)) >> hw) as u32;
                // dbg!(corr_uq1_hw);

                // Now, we should multiply UQ0.HW and UQ1.(HW-1) numbers, naturally
                // obtaining an UQ1.(HW-1) number and proving its highest bit could be
                // considered to be 0 to be able to represent it in UQ0.HW.
                // From the above analysis of f(x), if corr_UQ1_hw would be represented
                // without any intermediate loss of precision (that is, in twice_rep_t)
                // x_UQ0_hw could be at most [1.]000... if b_hw is exactly 1.0 and strictly
                // less otherwise. On the other hand, to obtain [1.]000..., one have to pass
                // 1/b_hw == 1.0 to f(x), so this cannot occur at all without overflow (due
                // to 1.0 being not representable as UQ0.HW).
                // The fact corr_UQ1_hw was virtually round up (due to result of
                // multiplication being **first** truncated, then negated - to improve
                // error estimations) can increase x_UQ0_hw by up to 2*Ulp of x_UQ0_hw.
                x_uq0_hw = ((x_uq0_hw as u64).wrapping_mul(corr_uq1_hw as u64) >> (hw - 1)) as u32;
                // dbg!(x_uq0_hw);
                // Now, either no overflow occurred or x_UQ0_hw is 0 or 1 in its half_rep_t
                // representation. In the latter case, x_UQ0_hw will be either 0 or 1 after
                // any number of iterations, so just subtract 2 from the reciprocal
                // approximation after last iteration.

                // In infinite precision, with 0 <= eps1, eps2 <= U = 2^-HW:
                // corr_UQ1_hw = 2 - (1/b_hw + e_n) * b_hw + 2*eps1
                //             = 1 - e_n * b_hw + 2*eps1
                // x_UQ0_hw = (1/b_hw + e_n) * (1 - e_n*b_hw + 2*eps1) - eps2
                //          = 1/b_hw - e_n + 2*eps1/b_hw + e_n - e_n^2*b_hw + 2*e_n*eps1 - eps2
                //          = 1/b_hw + 2*eps1/b_hw - e_n^2*b_hw + 2*e_n*eps1 - eps2
                // e_{n+1} = -e_n^2*b_hw + 2*eps1/b_hw + 2*e_n*eps1 - eps2
                //         = 2*e_n*eps1 - (e_n^2*b_hw + eps2) + 2*eps1/b_hw
                //                        \------ >0 -------/   \-- >0 ---/
                // abs(e_{n+1}) <= 2*abs(e_n)*U + max(2*e_n^2 + U, 2 * U)
            }
            // For initial half-width iterations, U = 2^-HW
            // Let  abs(e_n)     <= u_n * U,
            // then abs(e_{n+1}) <= 2 * u_n * U^2 + max(2 * u_n^2 * U^2 + U, 2 * U)
            // u_{n+1} <= 2 * u_n * U + max(2 * u_n^2 * U + 1, 2)

            // Account for possible overflow (see above). For an overflow to occur for the
            // first time, for "ideal" corr_UQ1_hw (that is, without intermediate
            // truncation), the result of x_UQ0_hw * corr_UQ1_hw should be either maximum
            // value representable in UQ0.HW or less by 1. This means that 1/b_hw have to
            // be not below that value (see g(x) above), so it is safe to decrement just
            // once after the final iteration. On the other hand, an effective value of
            // divisor changes after this point (from b_hw to b), so adjust here.
            x_uq0_hw.wrapping_sub(1_u32)
        };

        // Error estimations for full-precision iterations are calculated just
        // as above, but with U := 2^-W and taking extra decrementing into account.
        // We need at least one such iteration.

        // Simulating operations on a twice_rep_t to perform a single final full-width
        // iteration. Using ad-hoc multiplication implementations to take advantage
        // of particular structure of operands.
        let blo: u64 = (CastInto::<u64>::cast(b_uq1)) & lo_mask;
        // x_UQ0 = x_UQ0_hw * 2^HW - 1
        // x_UQ0 * b_UQ1 = (x_UQ0_hw * 2^HW) * (b_UQ1_hw * 2^HW + blo) - b_UQ1
        //
        //   <--- higher half ---><--- lower half --->
        //   [x_UQ0_hw * b_UQ1_hw]
        // +            [  x_UQ0_hw *  blo  ]
        // -                      [      b_UQ1       ]
        // = [      result       ][.... discarded ...]
        let corr_uq1 = negate_u64(
            (x_uq0_hw as u64) * (b_uq1_hw as u64) + (((x_uq0_hw as u64) * (blo)) >> hw) - 1,
        ); // account for *possible* carry
        let lo_corr = corr_uq1 & lo_mask;
        let hi_corr = corr_uq1 >> hw;
        // x_UQ0 * corr_UQ1 = (x_UQ0_hw * 2^HW) * (hi_corr * 2^HW + lo_corr) - corr_UQ1
        let mut x_uq0: <F as Float>::Int = ((((x_uq0_hw as u64) * hi_corr) << 1)
            .wrapping_add(((x_uq0_hw as u64) * lo_corr) >> (hw - 1))
            .wrapping_sub(2))
        .cast(); // 1 to account for the highest bit of corr_UQ1 can be 1
                 // 1 to account for possible carry
                 // Just like the case of half-width iterations but with possibility
                 // of overflowing by one extra Ulp of x_UQ0.
        x_uq0 -= one;
        // ... and then traditional fixup by 2 should work

        // On error estimation:
        // abs(E_{N-1}) <=   (u_{N-1} + 2 /* due to conversion e_n -> E_n */) * 2^-HW
        //                 + (2^-HW + 2^-W))
        // abs(E_{N-1}) <= (u_{N-1} + 3.01) * 2^-HW

        // Then like for the half-width iterations:
        // With 0 <= eps1, eps2 < 2^-W
        // E_N  = 4 * E_{N-1} * eps1 - (E_{N-1}^2 * b + 4 * eps2) + 4 * eps1 / b
        // abs(E_N) <= 2^-W * [ 4 * abs(E_{N-1}) + max(2 * abs(E_{N-1})^2 * 2^W + 4, 8)) ]
        // abs(E_N) <= 2^-W * [ 4 * (u_{N-1} + 3.01) * 2^-HW + max(4 + 2 * (u_{N-1} + 3.01)^2, 8) ]
        x_uq0
    } else {
        // C is (3/4 + 1/sqrt(2)) - 1 truncated to 64 fractional bits as UQ0.n
        let c: <F as Float>::Int = (0x7504F333 << (F::BITS - 32)).cast();
        let x_uq0: <F as Float>::Int = c.wrapping_sub(b_uq1);
        // E_0 <= 3/4 - 1/sqrt(2) + 2 * 2^-64
        x_uq0
    };

    let mut x_uq0 = if USE_NATIVE_FULL_ITERATIONS {
        for _ in 0..NUMBER_OF_FULL_ITERATIONS {
            let corr_uq1: u64 = 0.wrapping_sub(
                (CastInto::<u64>::cast(x_uq0) * (CastInto::<u64>::cast(b_uq1))) >> F::BITS,
            );
            x_uq0 = ((((CastInto::<u64>::cast(x_uq0) as u128) * (corr_uq1 as u128))
                >> (F::BITS - 1)) as u64)
                .cast();
        }
        x_uq0
    } else {
        // not using native full iterations
        x_uq0
    };

    // Finally, account for possible overflow, as explained above.
    x_uq0 = x_uq0.wrapping_sub(2.cast());

    // u_n for different precisions (with N-1 half-width iterations):
    // W0 is the precision of C
    //   u_0 = (3/4 - 1/sqrt(2) + 2^-W0) * 2^HW

    // Estimated with bc:
    //   define half1(un) { return 2.0 * (un + un^2) / 2.0^hw + 1.0; }
    //   define half2(un) { return 2.0 * un / 2.0^hw + 2.0; }
    //   define full1(un) { return 4.0 * (un + 3.01) / 2.0^hw + 2.0 * (un + 3.01)^2 + 4.0; }
    //   define full2(un) { return 4.0 * (un + 3.01) / 2.0^hw + 8.0; }

    //             | f32 (0 + 3) | f32 (2 + 1)  | f64 (3 + 1)  | f128 (4 + 1)
    // u_0         | < 184224974 | < 2812.1     | < 184224974  | < 791240234244348797
    // u_1         | < 15804007  | < 242.7      | < 15804007   | < 67877681371350440
    // u_2         | < 116308    | < 2.81       | < 116308     | < 499533100252317
    // u_3         | < 7.31      |              | < 7.31       | < 27054456580
    // u_4         |             |              |              | < 80.4
    // Final (U_N) | same as u_3 | < 72         | < 218        | < 13920

    // Add 2 to U_N due to final decrement.

    let reciprocal_precision: <F as Float>::Int = 220.cast();

    // Suppose 1/b - P * 2^-W < x < 1/b + P * 2^-W
    let x_uq0 = x_uq0 - reciprocal_precision;
    // Now 1/b - (2*P) * 2^-W < x < 1/b
    // FIXME Is x_UQ0 still >= 0.5?

    let mut quotient: <F as Float>::Int = x_uq0.widen_mul(a_significand << 1).hi();
    // Now, a/b - 4*P * 2^-W < q < a/b for q=<quotient_UQ1:dummy> in UQ1.(SB+1+W).

    // quotient_UQ1 is in [0.5, 2.0) as UQ1.(SB+1),
    // adjust it to be in [1.0, 2.0) as UQ1.SB.
    let (mut residual, written_exponent) = if quotient < (implicit_bit << 1) {
        // Highest bit is 0, so just reinterpret quotient_UQ1 as UQ1.SB,
        // effectively doubling its value as well as its error estimation.
        let residual_lo = (a_significand << (significand_bits + 1)).wrapping_sub(
            (CastInto::<u64>::cast(quotient).wrapping_mul(CastInto::<u64>::cast(b_significand)))
                .cast(),
        );
        a_significand <<= 1;
        (residual_lo, written_exponent.wrapping_sub(1))
    } else {
        // Highest bit is 1 (the UQ1.(SB+1) value is in [1, 2)), convert it
        // to UQ1.SB by right shifting by 1. Least significant bit is omitted.
        quotient >>= 1;
        let residual_lo = (a_significand << significand_bits).wrapping_sub(
            (CastInto::<u64>::cast(quotient).wrapping_mul(CastInto::<u64>::cast(b_significand)))
                .cast(),
        );
        (residual_lo, written_exponent)
    };

    //drop mutability
    let quotient = quotient;

    // NB: residualLo is calculated above for the normal result case.
    //     It is re-computed on denormal path that is expected to be not so
    //     performance-sensitive.

    // Now, q cannot be greater than a/b and can differ by at most 8*P * 2^-W + 2^-SB
    // Each NextAfter() increments the floating point value by at least 2^-SB
    // (more, if exponent was incremented).
    // Different cases (<---> is of 2^-SB length, * = a/b that is shown as a midpoint):
    //   q
    //   |   | * |   |   |       |       |
    //       <--->      2^t
    //   |   |   |   |   |   *   |       |
    //               q
    // To require at most one NextAfter(), an error should be less than 1.5 * 2^-SB.
    //   (8*P) * 2^-W + 2^-SB < 1.5 * 2^-SB
    //   (8*P) * 2^-W         < 0.5 * 2^-SB
    //   P < 2^(W-4-SB)
    // Generally, for at most R NextAfter() to be enough,
    //   P < (2*R - 1) * 2^(W-4-SB)
    // For f32 (0+3): 10 < 32 (OK)
    // For f32 (2+1): 32 < 74 < 32 * 3, so two NextAfter() are required
    // For f64: 220 < 256 (OK)
    // For f128: 4096 * 3 < 13922 < 4096 * 5 (three NextAfter() are required)

    // If we have overflowed the exponent, return infinity
    if written_exponent >= max_exponent as i64 {
        return F::from_repr(inf_rep | quotient_sign);
    }

    // Now, quotient <= the correctly-rounded result
    // and may need taking NextAfter() up to 3 times (see error estimates above)
    // r = a - b * q
    let abs_result = if written_exponent > 0 {
        let mut ret = quotient & significand_mask;
        ret |= ((written_exponent as u64) << significand_bits).cast();
        residual <<= 1;
        ret
    } else {
        if (significand_bits as i64 + written_exponent) < 0 {
            return F::from_repr(quotient_sign);
        }
        let ret =
            quotient.wrapping_shr((negate_u64(CastInto::<u64>::cast(written_exponent)) + 1) as u32);
        residual = (CastInto::<u64>::cast(
            a_significand.wrapping_shl(
                significand_bits.wrapping_add(CastInto::<u32>::cast(written_exponent)),
            ),
        )
        .wrapping_sub(
            (CastInto::<u64>::cast(ret).wrapping_mul(CastInto::<u64>::cast(b_significand))) << 1,
        ))
        .cast();
        ret
    };
    // Round
    let abs_result = {
        residual += abs_result & one; // tie to even
                                      // conditionally turns the below LT comparison into LTE
        if residual > b_significand {
            abs_result + one
        } else {
            abs_result
        }
    };
    F::from_repr(abs_result | quotient_sign)
}

intrinsics! {
    #[arm_aeabi_alias = __aeabi_fdiv]
    pub extern "C" fn __divsf3(a: f32, b: f32) -> f32 {
        div32(a, b)
    }

    #[arm_aeabi_alias = __aeabi_ddiv]
    pub extern "C" fn __divdf3(a: f64, b: f64) -> f64 {
        div64(a, b)
    }

    #[cfg(target_arch = "arm")]
    pub extern "C" fn __divsf3vfp(a: f32, b: f32) -> f32 {
        a / b
    }

    #[cfg(target_arch = "arm")]
    pub extern "C" fn __divdf3vfp(a: f64, b: f64) -> f64 {
        a / b
    }
}