1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
//! Slice selection
//!
//! This module contains the implementation for `slice::select_nth_unstable`.
//! It uses an introselect algorithm based on Orson Peters' pattern-defeating quicksort,
//! published at: <https://github.com/orlp/pdqsort>
//!
//! The fallback algorithm used for introselect is Median of Medians using Tukey's Ninther
//! for pivot selection. Using this as a fallback ensures O(n) worst case running time with
//! better performance than one would get using heapsort as fallback.
use crate::cmp;
use crate::mem::{self, SizedTypeProperties};
use crate::slice::sort::{
break_patterns, choose_pivot, insertion_sort_shift_left, partition, partition_equal,
};
// For slices of up to this length it's probably faster to simply sort them.
// Defined at the module scope because it's used in multiple functions.
const MAX_INSERTION: usize = 10;
fn partition_at_index_loop<'a, T, F>(
mut v: &'a mut [T],
mut index: usize,
is_less: &mut F,
mut pred: Option<&'a T>,
) where
F: FnMut(&T, &T) -> bool,
{
// Limit the amount of iterations and fall back to fast deterministic selection
// to ensure O(n) worst case running time. This limit needs to be constant, because
// using `ilog2(len)` like in `sort` would result in O(n log n) time complexity.
// The exact value of the limit is chosen somewhat arbitrarily, but for most inputs bad pivot
// selections should be relatively rare, so the limit usually shouldn't be reached
// anyways.
let mut limit = 16;
// True if the last partitioning was reasonably balanced.
let mut was_balanced = true;
loop {
if v.len() <= MAX_INSERTION {
if v.len() > 1 {
insertion_sort_shift_left(v, 1, is_less);
}
return;
}
if limit == 0 {
median_of_medians(v, is_less, index);
return;
}
// If the last partitioning was imbalanced, try breaking patterns in the slice by shuffling
// some elements around. Hopefully we'll choose a better pivot this time.
if !was_balanced {
break_patterns(v);
limit -= 1;
}
// Choose a pivot
let (pivot, _) = choose_pivot(v, is_less);
// If the chosen pivot is equal to the predecessor, then it's the smallest element in the
// slice. Partition the slice into elements equal to and elements greater than the pivot.
// This case is usually hit when the slice contains many duplicate elements.
if let Some(p) = pred {
if !is_less(p, &v[pivot]) {
let mid = partition_equal(v, pivot, is_less);
// If we've passed our index, then we're good.
if mid > index {
return;
}
// Otherwise, continue sorting elements greater than the pivot.
v = &mut v[mid..];
index = index - mid;
pred = None;
continue;
}
}
let (mid, _) = partition(v, pivot, is_less);
was_balanced = cmp::min(mid, v.len() - mid) >= v.len() / 8;
// Split the slice into `left`, `pivot`, and `right`.
let (left, right) = v.split_at_mut(mid);
let (pivot, right) = right.split_at_mut(1);
let pivot = &pivot[0];
if mid < index {
v = right;
index = index - mid - 1;
pred = Some(pivot);
} else if mid > index {
v = left;
} else {
// If mid == index, then we're done, since partition() guaranteed that all elements
// after mid are greater than or equal to mid.
return;
}
}
}
/// Helper function that returns the index of the minimum element in the slice using the given
/// comparator function
fn min_index<T, F: FnMut(&T, &T) -> bool>(slice: &[T], is_less: &mut F) -> Option<usize> {
slice
.iter()
.enumerate()
.reduce(|acc, t| if is_less(t.1, acc.1) { t } else { acc })
.map(|(i, _)| i)
}
/// Helper function that returns the index of the maximum element in the slice using the given
/// comparator function
fn max_index<T, F: FnMut(&T, &T) -> bool>(slice: &[T], is_less: &mut F) -> Option<usize> {
slice
.iter()
.enumerate()
.reduce(|acc, t| if is_less(acc.1, t.1) { t } else { acc })
.map(|(i, _)| i)
}
/// Reorder the slice such that the element at `index` is at its final sorted position.
pub fn partition_at_index<T, F>(
v: &mut [T],
index: usize,
mut is_less: F,
) -> (&mut [T], &mut T, &mut [T])
where
F: FnMut(&T, &T) -> bool,
{
if index >= v.len() {
panic!("partition_at_index index {} greater than length of slice {}", index, v.len());
}
if T::IS_ZST {
// Sorting has no meaningful behavior on zero-sized types. Do nothing.
} else if index == v.len() - 1 {
// Find max element and place it in the last position of the array. We're free to use
// `unwrap()` here because we know v must not be empty.
let max_idx = max_index(v, &mut is_less).unwrap();
v.swap(max_idx, index);
} else if index == 0 {
// Find min element and place it in the first position of the array. We're free to use
// `unwrap()` here because we know v must not be empty.
let min_idx = min_index(v, &mut is_less).unwrap();
v.swap(min_idx, index);
} else {
partition_at_index_loop(v, index, &mut is_less, None);
}
let (left, right) = v.split_at_mut(index);
let (pivot, right) = right.split_at_mut(1);
let pivot = &mut pivot[0];
(left, pivot, right)
}
/// Selection algorithm to select the k-th element from the slice in guaranteed O(n) time.
/// This is essentially a quickselect that uses Tukey's Ninther for pivot selection
fn median_of_medians<T, F: FnMut(&T, &T) -> bool>(mut v: &mut [T], is_less: &mut F, mut k: usize) {
// Since this function isn't public, it should never be called with an out-of-bounds index.
debug_assert!(k < v.len());
// If T is as ZST, `partition_at_index` will already return early.
debug_assert!(!T::IS_ZST);
// We now know that `k < v.len() <= isize::MAX`
loop {
if v.len() <= MAX_INSERTION {
if v.len() > 1 {
insertion_sort_shift_left(v, 1, is_less);
}
return;
}
// `median_of_{minima,maxima}` can't handle the extreme cases of the first/last element,
// so we catch them here and just do a linear search.
if k == v.len() - 1 {
// Find max element and place it in the last position of the array. We're free to use
// `unwrap()` here because we know v must not be empty.
let max_idx = max_index(v, is_less).unwrap();
v.swap(max_idx, k);
return;
} else if k == 0 {
// Find min element and place it in the first position of the array. We're free to use
// `unwrap()` here because we know v must not be empty.
let min_idx = min_index(v, is_less).unwrap();
v.swap(min_idx, k);
return;
}
let p = median_of_ninthers(v, is_less);
if p == k {
return;
} else if p > k {
v = &mut v[..p];
} else {
// Since `p < k < v.len()`, `p + 1` doesn't overflow and is
// a valid index into the slice.
v = &mut v[p + 1..];
k -= p + 1;
}
}
}
// Optimized for when `k` lies somewhere in the middle of the slice. Selects a pivot
// as close as possible to the median of the slice. For more details on how the algorithm
// operates, refer to the paper <https://drops.dagstuhl.de/opus/volltexte/2017/7612/pdf/LIPIcs-SEA-2017-24.pdf>.
fn median_of_ninthers<T, F: FnMut(&T, &T) -> bool>(v: &mut [T], is_less: &mut F) -> usize {
// use `saturating_mul` so the multiplication doesn't overflow on 16-bit platforms.
let frac = if v.len() <= 1024 {
v.len() / 12
} else if v.len() <= 128_usize.saturating_mul(1024) {
v.len() / 64
} else {
v.len() / 1024
};
let pivot = frac / 2;
let lo = v.len() / 2 - pivot;
let hi = frac + lo;
let gap = (v.len() - 9 * frac) / 4;
let mut a = lo - 4 * frac - gap;
let mut b = hi + gap;
for i in lo..hi {
ninther(v, is_less, a, i - frac, b, a + 1, i, b + 1, a + 2, i + frac, b + 2);
a += 3;
b += 3;
}
median_of_medians(&mut v[lo..lo + frac], is_less, pivot);
partition(v, lo + pivot, is_less).0
}
/// Moves around the 9 elements at the indices a..i, such that
/// `v[d]` contains the median of the 9 elements and the other
/// elements are partitioned around it.
fn ninther<T, F: FnMut(&T, &T) -> bool>(
v: &mut [T],
is_less: &mut F,
a: usize,
mut b: usize,
c: usize,
mut d: usize,
e: usize,
mut f: usize,
g: usize,
mut h: usize,
i: usize,
) {
b = median_idx(v, is_less, a, b, c);
h = median_idx(v, is_less, g, h, i);
if is_less(&v[h], &v[b]) {
mem::swap(&mut b, &mut h);
}
if is_less(&v[f], &v[d]) {
mem::swap(&mut d, &mut f);
}
if is_less(&v[e], &v[d]) {
// do nothing
} else if is_less(&v[f], &v[e]) {
d = f;
} else {
if is_less(&v[e], &v[b]) {
v.swap(e, b);
} else if is_less(&v[h], &v[e]) {
v.swap(e, h);
}
return;
}
if is_less(&v[d], &v[b]) {
d = b;
} else if is_less(&v[h], &v[d]) {
d = h;
}
v.swap(d, e);
}
/// returns the index pointing to the median of the 3
/// elements `v[a]`, `v[b]` and `v[c]`
fn median_idx<T, F: FnMut(&T, &T) -> bool>(
v: &[T],
is_less: &mut F,
mut a: usize,
b: usize,
mut c: usize,
) -> usize {
if is_less(&v[c], &v[a]) {
mem::swap(&mut a, &mut c);
}
if is_less(&v[c], &v[b]) {
return c;
}
if is_less(&v[b], &v[a]) {
return a;
}
b
}