1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
#![unstable(issue = "none", feature = "windows_stdio")]
use crate::cmp;
use crate::io;
use crate::mem::MaybeUninit;
use crate::os::windows::io::{FromRawHandle, IntoRawHandle};
use crate::ptr;
use crate::str;
use crate::sys::c;
use crate::sys::cvt;
use crate::sys::handle::Handle;
use core::str::utf8_char_width;
#[cfg(test)]
mod tests;
// Don't cache handles but get them fresh for every read/write. This allows us to track changes to
// the value over time (such as if a process calls `SetStdHandle` while it's running). See #40490.
pub struct Stdin {
surrogate: u16,
incomplete_utf8: IncompleteUtf8,
}
pub struct Stdout {
incomplete_utf8: IncompleteUtf8,
}
pub struct Stderr {
incomplete_utf8: IncompleteUtf8,
}
struct IncompleteUtf8 {
bytes: [u8; 4],
len: u8,
}
impl IncompleteUtf8 {
// Implemented for use in Stdin::read.
fn read(&mut self, buf: &mut [u8]) -> usize {
// Write to buffer until the buffer is full or we run out of bytes.
let to_write = cmp::min(buf.len(), self.len as usize);
buf[..to_write].copy_from_slice(&self.bytes[..to_write]);
// Rotate the remaining bytes if not enough remaining space in buffer.
if usize::from(self.len) > buf.len() {
self.bytes.copy_within(to_write.., 0);
self.len -= to_write as u8;
} else {
self.len = 0;
}
to_write
}
}
// Apparently Windows doesn't handle large reads on stdin or writes to stdout/stderr well (see
// #13304 for details).
//
// From MSDN (2011): "The storage for this buffer is allocated from a shared heap for the
// process that is 64 KB in size. The maximum size of the buffer will depend on heap usage."
//
// We choose the cap at 8 KiB because libuv does the same, and it seems to be acceptable so far.
const MAX_BUFFER_SIZE: usize = 8192;
// The standard buffer size of BufReader for Stdin should be able to hold 3x more bytes than there
// are `u16`'s in MAX_BUFFER_SIZE. This ensures the read data can always be completely decoded from
// UTF-16 to UTF-8.
pub const STDIN_BUF_SIZE: usize = MAX_BUFFER_SIZE / 2 * 3;
pub fn get_handle(handle_id: c::DWORD) -> io::Result<c::HANDLE> {
let handle = unsafe { c::GetStdHandle(handle_id) };
if handle == c::INVALID_HANDLE_VALUE {
Err(io::Error::last_os_error())
} else if handle.is_null() {
Err(io::Error::from_raw_os_error(c::ERROR_INVALID_HANDLE as i32))
} else {
Ok(handle)
}
}
fn is_console(handle: c::HANDLE) -> bool {
// `GetConsoleMode` will return false (0) if this is a pipe (we don't care about the reported
// mode). This will only detect Windows Console, not other terminals connected to a pipe like
// MSYS. Which is exactly what we need, as only Windows Console needs a conversion to UTF-16.
let mut mode = 0;
unsafe { c::GetConsoleMode(handle, &mut mode) != 0 }
}
fn write(
handle_id: c::DWORD,
data: &[u8],
incomplete_utf8: &mut IncompleteUtf8,
) -> io::Result<usize> {
if data.is_empty() {
return Ok(0);
}
let handle = get_handle(handle_id)?;
if !is_console(handle) {
unsafe {
let handle = Handle::from_raw_handle(handle);
let ret = handle.write(data);
handle.into_raw_handle(); // Don't close the handle
return ret;
}
}
if incomplete_utf8.len > 0 {
assert!(
incomplete_utf8.len < 4,
"Unexpected number of bytes for incomplete UTF-8 codepoint."
);
if data[0] >> 6 != 0b10 {
// not a continuation byte - reject
incomplete_utf8.len = 0;
return Err(io::const_io_error!(
io::ErrorKind::InvalidData,
"Windows stdio in console mode does not support writing non-UTF-8 byte sequences",
));
}
incomplete_utf8.bytes[incomplete_utf8.len as usize] = data[0];
incomplete_utf8.len += 1;
let char_width = utf8_char_width(incomplete_utf8.bytes[0]);
if (incomplete_utf8.len as usize) < char_width {
// more bytes needed
return Ok(1);
}
let s = str::from_utf8(&incomplete_utf8.bytes[0..incomplete_utf8.len as usize]);
incomplete_utf8.len = 0;
match s {
Ok(s) => {
assert_eq!(char_width, s.len());
let written = write_valid_utf8_to_console(handle, s)?;
assert_eq!(written, s.len()); // guaranteed by write_valid_utf8_to_console() for single codepoint writes
return Ok(1);
}
Err(_) => {
return Err(io::const_io_error!(
io::ErrorKind::InvalidData,
"Windows stdio in console mode does not support writing non-UTF-8 byte sequences",
));
}
}
}
// As the console is meant for presenting text, we assume bytes of `data` are encoded as UTF-8,
// which needs to be encoded as UTF-16.
//
// If the data is not valid UTF-8 we write out as many bytes as are valid.
// If the first byte is invalid it is either first byte of a multi-byte sequence but the
// provided byte slice is too short or it is the first byte of an invalid multi-byte sequence.
let len = cmp::min(data.len(), MAX_BUFFER_SIZE / 2);
let utf8 = match str::from_utf8(&data[..len]) {
Ok(s) => s,
Err(ref e) if e.valid_up_to() == 0 => {
let first_byte_char_width = utf8_char_width(data[0]);
if first_byte_char_width > 1 && data.len() < first_byte_char_width {
incomplete_utf8.bytes[0] = data[0];
incomplete_utf8.len = 1;
return Ok(1);
} else {
return Err(io::const_io_error!(
io::ErrorKind::InvalidData,
"Windows stdio in console mode does not support writing non-UTF-8 byte sequences",
));
}
}
Err(e) => str::from_utf8(&data[..e.valid_up_to()]).unwrap(),
};
write_valid_utf8_to_console(handle, utf8)
}
fn write_valid_utf8_to_console(handle: c::HANDLE, utf8: &str) -> io::Result<usize> {
debug_assert!(!utf8.is_empty());
let mut utf16 = [MaybeUninit::<u16>::uninit(); MAX_BUFFER_SIZE / 2];
let utf8 = &utf8[..utf8.floor_char_boundary(utf16.len())];
let utf16: &[u16] = unsafe {
// Note that this theoretically checks validity twice in the (most common) case
// where the underlying byte sequence is valid utf-8 (given the check in `write()`).
let result = c::MultiByteToWideChar(
c::CP_UTF8, // CodePage
c::MB_ERR_INVALID_CHARS, // dwFlags
utf8.as_ptr(), // lpMultiByteStr
utf8.len() as c::c_int, // cbMultiByte
utf16.as_mut_ptr() as c::LPWSTR, // lpWideCharStr
utf16.len() as c::c_int, // cchWideChar
);
assert!(result != 0, "Unexpected error in MultiByteToWideChar");
// Safety: MultiByteToWideChar initializes `result` values.
MaybeUninit::slice_assume_init_ref(&utf16[..result as usize])
};
let mut written = write_u16s(handle, &utf16)?;
// Figure out how many bytes of as UTF-8 were written away as UTF-16.
if written == utf16.len() {
Ok(utf8.len())
} else {
// Make sure we didn't end up writing only half of a surrogate pair (even though the chance
// is tiny). Because it is not possible for user code to re-slice `data` in such a way that
// a missing surrogate can be produced (and also because of the UTF-8 validation above),
// write the missing surrogate out now.
// Buffering it would mean we have to lie about the number of bytes written.
let first_code_unit_remaining = utf16[written];
if first_code_unit_remaining >= 0xDCEE && first_code_unit_remaining <= 0xDFFF {
// low surrogate
// We just hope this works, and give up otherwise
let _ = write_u16s(handle, &utf16[written..written + 1]);
written += 1;
}
// Calculate the number of bytes of `utf8` that were actually written.
let mut count = 0;
for ch in utf16[..written].iter() {
count += match ch {
0x0000..=0x007F => 1,
0x0080..=0x07FF => 2,
0xDCEE..=0xDFFF => 1, // Low surrogate. We already counted 3 bytes for the other.
_ => 3,
};
}
debug_assert!(String::from_utf16(&utf16[..written]).unwrap() == utf8[..count]);
Ok(count)
}
}
fn write_u16s(handle: c::HANDLE, data: &[u16]) -> io::Result<usize> {
debug_assert!(data.len() < u32::MAX as usize);
let mut written = 0;
cvt(unsafe {
c::WriteConsoleW(
handle,
data.as_ptr() as c::LPCVOID,
data.len() as u32,
&mut written,
ptr::null_mut(),
)
})?;
Ok(written as usize)
}
impl Stdin {
pub const fn new() -> Stdin {
Stdin { surrogate: 0, incomplete_utf8: IncompleteUtf8::new() }
}
}
impl io::Read for Stdin {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let handle = get_handle(c::STD_INPUT_HANDLE)?;
if !is_console(handle) {
unsafe {
let handle = Handle::from_raw_handle(handle);
let ret = handle.read(buf);
handle.into_raw_handle(); // Don't close the handle
return ret;
}
}
// If there are bytes in the incomplete utf-8, start with those.
// (No-op if there is nothing in the buffer.)
let mut bytes_copied = self.incomplete_utf8.read(buf);
if bytes_copied == buf.len() {
return Ok(bytes_copied);
} else if buf.len() - bytes_copied < 4 {
// Not enough space to get a UTF-8 byte. We will use the incomplete UTF8.
let mut utf16_buf = [MaybeUninit::new(0); 1];
// Read one u16 character.
let read = read_u16s_fixup_surrogates(handle, &mut utf16_buf, 1, &mut self.surrogate)?;
// Read bytes, using the (now-empty) self.incomplete_utf8 as extra space.
let read_bytes = utf16_to_utf8(
unsafe { MaybeUninit::slice_assume_init_ref(&utf16_buf[..read]) },
&mut self.incomplete_utf8.bytes,
)?;
// Read in the bytes from incomplete_utf8 until the buffer is full.
self.incomplete_utf8.len = read_bytes as u8;
// No-op if no bytes.
bytes_copied += self.incomplete_utf8.read(&mut buf[bytes_copied..]);
Ok(bytes_copied)
} else {
let mut utf16_buf = [MaybeUninit::<u16>::uninit(); MAX_BUFFER_SIZE / 2];
// In the worst case, a UTF-8 string can take 3 bytes for every `u16` of a UTF-16. So
// we can read at most a third of `buf.len()` chars and uphold the guarantee no data gets
// lost.
let amount = cmp::min(buf.len() / 3, utf16_buf.len());
let read =
read_u16s_fixup_surrogates(handle, &mut utf16_buf, amount, &mut self.surrogate)?;
// Safety `read_u16s_fixup_surrogates` returns the number of items
// initialized.
let utf16s = unsafe { MaybeUninit::slice_assume_init_ref(&utf16_buf[..read]) };
match utf16_to_utf8(utf16s, buf) {
Ok(value) => return Ok(bytes_copied + value),
Err(e) => return Err(e),
}
}
}
}
// We assume that if the last `u16` is an unpaired surrogate they got sliced apart by our
// buffer size, and keep it around for the next read hoping to put them together.
// This is a best effort, and might not work if we are not the only reader on Stdin.
fn read_u16s_fixup_surrogates(
handle: c::HANDLE,
buf: &mut [MaybeUninit<u16>],
mut amount: usize,
surrogate: &mut u16,
) -> io::Result<usize> {
// Insert possibly remaining unpaired surrogate from last read.
let mut start = 0;
if *surrogate != 0 {
buf[0] = MaybeUninit::new(*surrogate);
*surrogate = 0;
start = 1;
if amount == 1 {
// Special case: `Stdin::read` guarantees we can always read at least one new `u16`
// and combine it with an unpaired surrogate, because the UTF-8 buffer is at least
// 4 bytes.
amount = 2;
}
}
let mut amount = read_u16s(handle, &mut buf[start..amount])? + start;
if amount > 0 {
// Safety: The returned `amount` is the number of values initialized,
// and it is not 0, so we know that `buf[amount - 1]` have been
// initialized.
let last_char = unsafe { buf[amount - 1].assume_init() };
if last_char >= 0xD800 && last_char <= 0xDBFF {
// high surrogate
*surrogate = last_char;
amount -= 1;
}
}
Ok(amount)
}
// Returns `Ok(n)` if it initialized `n` values in `buf`.
fn read_u16s(handle: c::HANDLE, buf: &mut [MaybeUninit<u16>]) -> io::Result<usize> {
// Configure the `pInputControl` parameter to not only return on `\r\n` but also Ctrl-Z, the
// traditional DOS method to indicate end of character stream / user input (SUB).
// See #38274 and https://stackoverflow.com/questions/43836040/win-api-readconsole.
const CTRL_Z: u16 = 0x1A;
const CTRL_Z_MASK: c::ULONG = 1 << CTRL_Z;
let input_control = c::CONSOLE_READCONSOLE_CONTROL {
nLength: crate::mem::size_of::<c::CONSOLE_READCONSOLE_CONTROL>() as c::ULONG,
nInitialChars: 0,
dwCtrlWakeupMask: CTRL_Z_MASK,
dwControlKeyState: 0,
};
let mut amount = 0;
loop {
cvt(unsafe {
c::SetLastError(0);
c::ReadConsoleW(
handle,
buf.as_mut_ptr() as c::LPVOID,
buf.len() as u32,
&mut amount,
&input_control,
)
})?;
// ReadConsoleW returns success with ERROR_OPERATION_ABORTED for Ctrl-C or Ctrl-Break.
// Explicitly check for that case here and try again.
if amount == 0 && unsafe { c::GetLastError() } == c::ERROR_OPERATION_ABORTED {
continue;
}
break;
}
// Safety: if `amount > 0`, then that many bytes were written, so
// `buf[amount as usize - 1]` has been initialized.
if amount > 0 && unsafe { buf[amount as usize - 1].assume_init() } == CTRL_Z {
amount -= 1;
}
Ok(amount as usize)
}
fn utf16_to_utf8(utf16: &[u16], utf8: &mut [u8]) -> io::Result<usize> {
debug_assert!(utf16.len() <= c::c_int::MAX as usize);
debug_assert!(utf8.len() <= c::c_int::MAX as usize);
if utf16.is_empty() {
return Ok(0);
}
let result = unsafe {
c::WideCharToMultiByte(
c::CP_UTF8, // CodePage
c::WC_ERR_INVALID_CHARS, // dwFlags
utf16.as_ptr(), // lpWideCharStr
utf16.len() as c::c_int, // cchWideChar
utf8.as_mut_ptr(), // lpMultiByteStr
utf8.len() as c::c_int, // cbMultiByte
ptr::null(), // lpDefaultChar
ptr::null_mut(), // lpUsedDefaultChar
)
};
if result == 0 {
// We can't really do any better than forget all data and return an error.
Err(io::const_io_error!(
io::ErrorKind::InvalidData,
"Windows stdin in console mode does not support non-UTF-16 input; \
encountered unpaired surrogate",
))
} else {
Ok(result as usize)
}
}
impl IncompleteUtf8 {
pub const fn new() -> IncompleteUtf8 {
IncompleteUtf8 { bytes: [0; 4], len: 0 }
}
}
impl Stdout {
pub const fn new() -> Stdout {
Stdout { incomplete_utf8: IncompleteUtf8::new() }
}
}
impl io::Write for Stdout {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
write(c::STD_OUTPUT_HANDLE, buf, &mut self.incomplete_utf8)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl Stderr {
pub const fn new() -> Stderr {
Stderr { incomplete_utf8: IncompleteUtf8::new() }
}
}
impl io::Write for Stderr {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
write(c::STD_ERROR_HANDLE, buf, &mut self.incomplete_utf8)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
pub fn is_ebadf(err: &io::Error) -> bool {
err.raw_os_error() == Some(c::ERROR_INVALID_HANDLE as i32)
}
pub fn panic_output() -> Option<impl io::Write> {
Some(Stderr::new())
}