1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#![unstable(issue = "none", feature = "windows_stdio")]

use crate::cmp;
use crate::io;
use crate::mem::MaybeUninit;
use crate::os::windows::io::{FromRawHandle, IntoRawHandle};
use crate::ptr;
use crate::str;
use crate::sys::c;
use crate::sys::cvt;
use crate::sys::handle::Handle;
use core::str::utf8_char_width;

#[cfg(test)]
mod tests;

// Don't cache handles but get them fresh for every read/write. This allows us to track changes to
// the value over time (such as if a process calls `SetStdHandle` while it's running). See #40490.
pub struct Stdin {
    surrogate: u16,
    incomplete_utf8: IncompleteUtf8,
}

pub struct Stdout {
    incomplete_utf8: IncompleteUtf8,
}

pub struct Stderr {
    incomplete_utf8: IncompleteUtf8,
}

struct IncompleteUtf8 {
    bytes: [u8; 4],
    len: u8,
}

impl IncompleteUtf8 {
    // Implemented for use in Stdin::read.
    fn read(&mut self, buf: &mut [u8]) -> usize {
        // Write to buffer until the buffer is full or we run out of bytes.
        let to_write = cmp::min(buf.len(), self.len as usize);
        buf[..to_write].copy_from_slice(&self.bytes[..to_write]);

        // Rotate the remaining bytes if not enough remaining space in buffer.
        if usize::from(self.len) > buf.len() {
            self.bytes.copy_within(to_write.., 0);
            self.len -= to_write as u8;
        } else {
            self.len = 0;
        }

        to_write
    }
}

// Apparently Windows doesn't handle large reads on stdin or writes to stdout/stderr well (see
// #13304 for details).
//
// From MSDN (2011): "The storage for this buffer is allocated from a shared heap for the
// process that is 64 KB in size. The maximum size of the buffer will depend on heap usage."
//
// We choose the cap at 8 KiB because libuv does the same, and it seems to be acceptable so far.
const MAX_BUFFER_SIZE: usize = 8192;

// The standard buffer size of BufReader for Stdin should be able to hold 3x more bytes than there
// are `u16`'s in MAX_BUFFER_SIZE. This ensures the read data can always be completely decoded from
// UTF-16 to UTF-8.
pub const STDIN_BUF_SIZE: usize = MAX_BUFFER_SIZE / 2 * 3;

pub fn get_handle(handle_id: c::DWORD) -> io::Result<c::HANDLE> {
    let handle = unsafe { c::GetStdHandle(handle_id) };
    if handle == c::INVALID_HANDLE_VALUE {
        Err(io::Error::last_os_error())
    } else if handle.is_null() {
        Err(io::Error::from_raw_os_error(c::ERROR_INVALID_HANDLE as i32))
    } else {
        Ok(handle)
    }
}

fn is_console(handle: c::HANDLE) -> bool {
    // `GetConsoleMode` will return false (0) if this is a pipe (we don't care about the reported
    // mode). This will only detect Windows Console, not other terminals connected to a pipe like
    // MSYS. Which is exactly what we need, as only Windows Console needs a conversion to UTF-16.
    let mut mode = 0;
    unsafe { c::GetConsoleMode(handle, &mut mode) != 0 }
}

fn write(
    handle_id: c::DWORD,
    data: &[u8],
    incomplete_utf8: &mut IncompleteUtf8,
) -> io::Result<usize> {
    if data.is_empty() {
        return Ok(0);
    }

    let handle = get_handle(handle_id)?;
    if !is_console(handle) {
        unsafe {
            let handle = Handle::from_raw_handle(handle);
            let ret = handle.write(data);
            handle.into_raw_handle(); // Don't close the handle
            return ret;
        }
    }

    if incomplete_utf8.len > 0 {
        assert!(
            incomplete_utf8.len < 4,
            "Unexpected number of bytes for incomplete UTF-8 codepoint."
        );
        if data[0] >> 6 != 0b10 {
            // not a continuation byte - reject
            incomplete_utf8.len = 0;
            return Err(io::const_io_error!(
                io::ErrorKind::InvalidData,
                "Windows stdio in console mode does not support writing non-UTF-8 byte sequences",
            ));
        }
        incomplete_utf8.bytes[incomplete_utf8.len as usize] = data[0];
        incomplete_utf8.len += 1;
        let char_width = utf8_char_width(incomplete_utf8.bytes[0]);
        if (incomplete_utf8.len as usize) < char_width {
            // more bytes needed
            return Ok(1);
        }
        let s = str::from_utf8(&incomplete_utf8.bytes[0..incomplete_utf8.len as usize]);
        incomplete_utf8.len = 0;
        match s {
            Ok(s) => {
                assert_eq!(char_width, s.len());
                let written = write_valid_utf8_to_console(handle, s)?;
                assert_eq!(written, s.len()); // guaranteed by write_valid_utf8_to_console() for single codepoint writes
                return Ok(1);
            }
            Err(_) => {
                return Err(io::const_io_error!(
                    io::ErrorKind::InvalidData,
                    "Windows stdio in console mode does not support writing non-UTF-8 byte sequences",
                ));
            }
        }
    }

    // As the console is meant for presenting text, we assume bytes of `data` are encoded as UTF-8,
    // which needs to be encoded as UTF-16.
    //
    // If the data is not valid UTF-8 we write out as many bytes as are valid.
    // If the first byte is invalid it is either first byte of a multi-byte sequence but the
    // provided byte slice is too short or it is the first byte of an invalid multi-byte sequence.
    let len = cmp::min(data.len(), MAX_BUFFER_SIZE / 2);
    let utf8 = match str::from_utf8(&data[..len]) {
        Ok(s) => s,
        Err(ref e) if e.valid_up_to() == 0 => {
            let first_byte_char_width = utf8_char_width(data[0]);
            if first_byte_char_width > 1 && data.len() < first_byte_char_width {
                incomplete_utf8.bytes[0] = data[0];
                incomplete_utf8.len = 1;
                return Ok(1);
            } else {
                return Err(io::const_io_error!(
                    io::ErrorKind::InvalidData,
                    "Windows stdio in console mode does not support writing non-UTF-8 byte sequences",
                ));
            }
        }
        Err(e) => str::from_utf8(&data[..e.valid_up_to()]).unwrap(),
    };

    write_valid_utf8_to_console(handle, utf8)
}

fn write_valid_utf8_to_console(handle: c::HANDLE, utf8: &str) -> io::Result<usize> {
    debug_assert!(!utf8.is_empty());

    let mut utf16 = [MaybeUninit::<u16>::uninit(); MAX_BUFFER_SIZE / 2];
    let utf8 = &utf8[..utf8.floor_char_boundary(utf16.len())];

    let utf16: &[u16] = unsafe {
        // Note that this theoretically checks validity twice in the (most common) case
        // where the underlying byte sequence is valid utf-8 (given the check in `write()`).
        let result = c::MultiByteToWideChar(
            c::CP_UTF8,                      // CodePage
            c::MB_ERR_INVALID_CHARS,         // dwFlags
            utf8.as_ptr(),                   // lpMultiByteStr
            utf8.len() as c::c_int,          // cbMultiByte
            utf16.as_mut_ptr() as c::LPWSTR, // lpWideCharStr
            utf16.len() as c::c_int,         // cchWideChar
        );
        assert!(result != 0, "Unexpected error in MultiByteToWideChar");

        // Safety: MultiByteToWideChar initializes `result` values.
        MaybeUninit::slice_assume_init_ref(&utf16[..result as usize])
    };

    let mut written = write_u16s(handle, &utf16)?;

    // Figure out how many bytes of as UTF-8 were written away as UTF-16.
    if written == utf16.len() {
        Ok(utf8.len())
    } else {
        // Make sure we didn't end up writing only half of a surrogate pair (even though the chance
        // is tiny). Because it is not possible for user code to re-slice `data` in such a way that
        // a missing surrogate can be produced (and also because of the UTF-8 validation above),
        // write the missing surrogate out now.
        // Buffering it would mean we have to lie about the number of bytes written.
        let first_code_unit_remaining = utf16[written];
        if first_code_unit_remaining >= 0xDCEE && first_code_unit_remaining <= 0xDFFF {
            // low surrogate
            // We just hope this works, and give up otherwise
            let _ = write_u16s(handle, &utf16[written..written + 1]);
            written += 1;
        }
        // Calculate the number of bytes of `utf8` that were actually written.
        let mut count = 0;
        for ch in utf16[..written].iter() {
            count += match ch {
                0x0000..=0x007F => 1,
                0x0080..=0x07FF => 2,
                0xDCEE..=0xDFFF => 1, // Low surrogate. We already counted 3 bytes for the other.
                _ => 3,
            };
        }
        debug_assert!(String::from_utf16(&utf16[..written]).unwrap() == utf8[..count]);
        Ok(count)
    }
}

fn write_u16s(handle: c::HANDLE, data: &[u16]) -> io::Result<usize> {
    debug_assert!(data.len() < u32::MAX as usize);
    let mut written = 0;
    cvt(unsafe {
        c::WriteConsoleW(
            handle,
            data.as_ptr() as c::LPCVOID,
            data.len() as u32,
            &mut written,
            ptr::null_mut(),
        )
    })?;
    Ok(written as usize)
}

impl Stdin {
    pub const fn new() -> Stdin {
        Stdin { surrogate: 0, incomplete_utf8: IncompleteUtf8::new() }
    }
}

impl io::Read for Stdin {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let handle = get_handle(c::STD_INPUT_HANDLE)?;
        if !is_console(handle) {
            unsafe {
                let handle = Handle::from_raw_handle(handle);
                let ret = handle.read(buf);
                handle.into_raw_handle(); // Don't close the handle
                return ret;
            }
        }

        // If there are bytes in the incomplete utf-8, start with those.
        // (No-op if there is nothing in the buffer.)
        let mut bytes_copied = self.incomplete_utf8.read(buf);

        if bytes_copied == buf.len() {
            return Ok(bytes_copied);
        } else if buf.len() - bytes_copied < 4 {
            // Not enough space to get a UTF-8 byte. We will use the incomplete UTF8.
            let mut utf16_buf = [MaybeUninit::new(0); 1];
            // Read one u16 character.
            let read = read_u16s_fixup_surrogates(handle, &mut utf16_buf, 1, &mut self.surrogate)?;
            // Read bytes, using the (now-empty) self.incomplete_utf8 as extra space.
            let read_bytes = utf16_to_utf8(
                unsafe { MaybeUninit::slice_assume_init_ref(&utf16_buf[..read]) },
                &mut self.incomplete_utf8.bytes,
            )?;

            // Read in the bytes from incomplete_utf8 until the buffer is full.
            self.incomplete_utf8.len = read_bytes as u8;
            // No-op if no bytes.
            bytes_copied += self.incomplete_utf8.read(&mut buf[bytes_copied..]);
            Ok(bytes_copied)
        } else {
            let mut utf16_buf = [MaybeUninit::<u16>::uninit(); MAX_BUFFER_SIZE / 2];

            // In the worst case, a UTF-8 string can take 3 bytes for every `u16` of a UTF-16. So
            // we can read at most a third of `buf.len()` chars and uphold the guarantee no data gets
            // lost.
            let amount = cmp::min(buf.len() / 3, utf16_buf.len());
            let read =
                read_u16s_fixup_surrogates(handle, &mut utf16_buf, amount, &mut self.surrogate)?;
            // Safety `read_u16s_fixup_surrogates` returns the number of items
            // initialized.
            let utf16s = unsafe { MaybeUninit::slice_assume_init_ref(&utf16_buf[..read]) };
            match utf16_to_utf8(utf16s, buf) {
                Ok(value) => return Ok(bytes_copied + value),
                Err(e) => return Err(e),
            }
        }
    }
}

// We assume that if the last `u16` is an unpaired surrogate they got sliced apart by our
// buffer size, and keep it around for the next read hoping to put them together.
// This is a best effort, and might not work if we are not the only reader on Stdin.
fn read_u16s_fixup_surrogates(
    handle: c::HANDLE,
    buf: &mut [MaybeUninit<u16>],
    mut amount: usize,
    surrogate: &mut u16,
) -> io::Result<usize> {
    // Insert possibly remaining unpaired surrogate from last read.
    let mut start = 0;
    if *surrogate != 0 {
        buf[0] = MaybeUninit::new(*surrogate);
        *surrogate = 0;
        start = 1;
        if amount == 1 {
            // Special case: `Stdin::read` guarantees we can always read at least one new `u16`
            // and combine it with an unpaired surrogate, because the UTF-8 buffer is at least
            // 4 bytes.
            amount = 2;
        }
    }
    let mut amount = read_u16s(handle, &mut buf[start..amount])? + start;

    if amount > 0 {
        // Safety: The returned `amount` is the number of values initialized,
        // and it is not 0, so we know that `buf[amount - 1]` have been
        // initialized.
        let last_char = unsafe { buf[amount - 1].assume_init() };
        if last_char >= 0xD800 && last_char <= 0xDBFF {
            // high surrogate
            *surrogate = last_char;
            amount -= 1;
        }
    }
    Ok(amount)
}

// Returns `Ok(n)` if it initialized `n` values in `buf`.
fn read_u16s(handle: c::HANDLE, buf: &mut [MaybeUninit<u16>]) -> io::Result<usize> {
    // Configure the `pInputControl` parameter to not only return on `\r\n` but also Ctrl-Z, the
    // traditional DOS method to indicate end of character stream / user input (SUB).
    // See #38274 and https://stackoverflow.com/questions/43836040/win-api-readconsole.
    const CTRL_Z: u16 = 0x1A;
    const CTRL_Z_MASK: c::ULONG = 1 << CTRL_Z;
    let input_control = c::CONSOLE_READCONSOLE_CONTROL {
        nLength: crate::mem::size_of::<c::CONSOLE_READCONSOLE_CONTROL>() as c::ULONG,
        nInitialChars: 0,
        dwCtrlWakeupMask: CTRL_Z_MASK,
        dwControlKeyState: 0,
    };

    let mut amount = 0;
    loop {
        cvt(unsafe {
            c::SetLastError(0);
            c::ReadConsoleW(
                handle,
                buf.as_mut_ptr() as c::LPVOID,
                buf.len() as u32,
                &mut amount,
                &input_control,
            )
        })?;

        // ReadConsoleW returns success with ERROR_OPERATION_ABORTED for Ctrl-C or Ctrl-Break.
        // Explicitly check for that case here and try again.
        if amount == 0 && unsafe { c::GetLastError() } == c::ERROR_OPERATION_ABORTED {
            continue;
        }
        break;
    }
    // Safety: if `amount > 0`, then that many bytes were written, so
    // `buf[amount as usize - 1]` has been initialized.
    if amount > 0 && unsafe { buf[amount as usize - 1].assume_init() } == CTRL_Z {
        amount -= 1;
    }
    Ok(amount as usize)
}

fn utf16_to_utf8(utf16: &[u16], utf8: &mut [u8]) -> io::Result<usize> {
    debug_assert!(utf16.len() <= c::c_int::MAX as usize);
    debug_assert!(utf8.len() <= c::c_int::MAX as usize);

    if utf16.is_empty() {
        return Ok(0);
    }

    let result = unsafe {
        c::WideCharToMultiByte(
            c::CP_UTF8,              // CodePage
            c::WC_ERR_INVALID_CHARS, // dwFlags
            utf16.as_ptr(),          // lpWideCharStr
            utf16.len() as c::c_int, // cchWideChar
            utf8.as_mut_ptr(),       // lpMultiByteStr
            utf8.len() as c::c_int,  // cbMultiByte
            ptr::null(),             // lpDefaultChar
            ptr::null_mut(),         // lpUsedDefaultChar
        )
    };
    if result == 0 {
        // We can't really do any better than forget all data and return an error.
        Err(io::const_io_error!(
            io::ErrorKind::InvalidData,
            "Windows stdin in console mode does not support non-UTF-16 input; \
            encountered unpaired surrogate",
        ))
    } else {
        Ok(result as usize)
    }
}

impl IncompleteUtf8 {
    pub const fn new() -> IncompleteUtf8 {
        IncompleteUtf8 { bytes: [0; 4], len: 0 }
    }
}

impl Stdout {
    pub const fn new() -> Stdout {
        Stdout { incomplete_utf8: IncompleteUtf8::new() }
    }
}

impl io::Write for Stdout {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        write(c::STD_OUTPUT_HANDLE, buf, &mut self.incomplete_utf8)
    }

    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

impl Stderr {
    pub const fn new() -> Stderr {
        Stderr { incomplete_utf8: IncompleteUtf8::new() }
    }
}

impl io::Write for Stderr {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        write(c::STD_ERROR_HANDLE, buf, &mut self.incomplete_utf8)
    }

    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

pub fn is_ebadf(err: &io::Error) -> bool {
    err.raw_os_error() == Some(c::ERROR_INVALID_HANDLE as i32)
}

pub fn panic_output() -> Option<impl io::Write> {
    Some(Stderr::new())
}