1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
use super::{c, fill_utf16_buf, to_u16s};
use crate::ffi::{OsStr, OsString};
use crate::io;
use crate::path::{Path, PathBuf, Prefix};
use crate::ptr;
#[cfg(test)]
mod tests;
pub const MAIN_SEP_STR: &str = "\\";
pub const MAIN_SEP: char = '\\';
#[inline]
pub fn is_sep_byte(b: u8) -> bool {
b == b'/' || b == b'\\'
}
#[inline]
pub fn is_verbatim_sep(b: u8) -> bool {
b == b'\\'
}
/// Returns true if `path` looks like a lone filename.
pub(crate) fn is_file_name(path: &OsStr) -> bool {
!path.as_os_str_bytes().iter().copied().any(is_sep_byte)
}
pub(crate) fn has_trailing_slash(path: &OsStr) -> bool {
let is_verbatim = path.as_os_str_bytes().starts_with(br"\\?\");
let is_separator = if is_verbatim { is_verbatim_sep } else { is_sep_byte };
if let Some(&c) = path.as_os_str_bytes().last() { is_separator(c) } else { false }
}
/// Appends a suffix to a path.
///
/// Can be used to append an extension without removing an existing extension.
pub(crate) fn append_suffix(path: PathBuf, suffix: &OsStr) -> PathBuf {
let mut path = OsString::from(path);
path.push(suffix);
path.into()
}
struct PrefixParser<'a, const LEN: usize> {
path: &'a OsStr,
prefix: [u8; LEN],
}
impl<'a, const LEN: usize> PrefixParser<'a, LEN> {
#[inline]
fn get_prefix(path: &OsStr) -> [u8; LEN] {
let mut prefix = [0; LEN];
// SAFETY: Only ASCII characters are modified.
for (i, &ch) in path.as_os_str_bytes().iter().take(LEN).enumerate() {
prefix[i] = if ch == b'/' { b'\\' } else { ch };
}
prefix
}
fn new(path: &'a OsStr) -> Self {
Self { path, prefix: Self::get_prefix(path) }
}
fn as_slice(&self) -> PrefixParserSlice<'a, '_> {
PrefixParserSlice {
path: self.path,
prefix: &self.prefix[..LEN.min(self.path.len())],
index: 0,
}
}
}
struct PrefixParserSlice<'a, 'b> {
path: &'a OsStr,
prefix: &'b [u8],
index: usize,
}
impl<'a> PrefixParserSlice<'a, '_> {
fn strip_prefix(&self, prefix: &str) -> Option<Self> {
self.prefix[self.index..]
.starts_with(prefix.as_bytes())
.then(|| Self { index: self.index + prefix.len(), ..*self })
}
fn prefix_bytes(&self) -> &'a [u8] {
&self.path.as_os_str_bytes()[..self.index]
}
fn finish(self) -> &'a OsStr {
// SAFETY: The unsafety here stems from converting between &OsStr and
// &[u8] and back. This is safe to do because (1) we only look at ASCII
// contents of the encoding and (2) new &OsStr values are produced only
// from ASCII-bounded slices of existing &OsStr values.
unsafe { OsStr::from_os_str_bytes_unchecked(&self.path.as_os_str_bytes()[self.index..]) }
}
}
pub fn parse_prefix(path: &OsStr) -> Option<Prefix<'_>> {
use Prefix::{DeviceNS, Disk, Verbatim, VerbatimDisk, VerbatimUNC, UNC};
let parser = PrefixParser::<8>::new(path);
let parser = parser.as_slice();
if let Some(parser) = parser.strip_prefix(r"\\") {
// \\
// The meaning of verbatim paths can change when they use a different
// separator.
if let Some(parser) = parser.strip_prefix(r"?\") && !parser.prefix_bytes().iter().any(|&x| x == b'/') {
// \\?\
if let Some(parser) = parser.strip_prefix(r"UNC\") {
// \\?\UNC\server\share
let path = parser.finish();
let (server, path) = parse_next_component(path, true);
let (share, _) = parse_next_component(path, true);
Some(VerbatimUNC(server, share))
} else {
let path = parser.finish();
// in verbatim paths only recognize an exact drive prefix
if let Some(drive) = parse_drive_exact(path) {
// \\?\C:
Some(VerbatimDisk(drive))
} else {
// \\?\prefix
let (prefix, _) = parse_next_component(path, true);
Some(Verbatim(prefix))
}
}
} else if let Some(parser) = parser.strip_prefix(r".\") {
// \\.\COM42
let path = parser.finish();
let (prefix, _) = parse_next_component(path, false);
Some(DeviceNS(prefix))
} else {
let path = parser.finish();
let (server, path) = parse_next_component(path, false);
let (share, _) = parse_next_component(path, false);
if !server.is_empty() && !share.is_empty() {
// \\server\share
Some(UNC(server, share))
} else {
// no valid prefix beginning with "\\" recognized
None
}
}
} else if let Some(drive) = parse_drive(path) {
// C:
Some(Disk(drive))
} else {
// no prefix
None
}
}
// Parses a drive prefix, e.g. "C:" and "C:\whatever"
fn parse_drive(path: &OsStr) -> Option<u8> {
// In most DOS systems, it is not possible to have more than 26 drive letters.
// See <https://en.wikipedia.org/wiki/Drive_letter_assignment#Common_assignments>.
fn is_valid_drive_letter(drive: &u8) -> bool {
drive.is_ascii_alphabetic()
}
match path.as_os_str_bytes() {
[drive, b':', ..] if is_valid_drive_letter(drive) => Some(drive.to_ascii_uppercase()),
_ => None,
}
}
// Parses a drive prefix exactly, e.g. "C:"
fn parse_drive_exact(path: &OsStr) -> Option<u8> {
// only parse two bytes: the drive letter and the drive separator
if path.as_os_str_bytes().get(2).map(|&x| is_sep_byte(x)).unwrap_or(true) {
parse_drive(path)
} else {
None
}
}
// Parse the next path component.
//
// Returns the next component and the rest of the path excluding the component and separator.
// Does not recognize `/` as a separator character if `verbatim` is true.
fn parse_next_component(path: &OsStr, verbatim: bool) -> (&OsStr, &OsStr) {
let separator = if verbatim { is_verbatim_sep } else { is_sep_byte };
match path.as_os_str_bytes().iter().position(|&x| separator(x)) {
Some(separator_start) => {
let separator_end = separator_start + 1;
let component = &path.as_os_str_bytes()[..separator_start];
// Panic safe
// The max `separator_end` is `bytes.len()` and `bytes[bytes.len()..]` is a valid index.
let path = &path.as_os_str_bytes()[separator_end..];
// SAFETY: `path` is a valid wtf8 encoded slice and each of the separators ('/', '\')
// is encoded in a single byte, therefore `bytes[separator_start]` and
// `bytes[separator_end]` must be code point boundaries and thus
// `bytes[..separator_start]` and `bytes[separator_end..]` are valid wtf8 slices.
unsafe {
(
OsStr::from_os_str_bytes_unchecked(component),
OsStr::from_os_str_bytes_unchecked(path),
)
}
}
None => (path, OsStr::new("")),
}
}
/// Returns a UTF-16 encoded path capable of bypassing the legacy `MAX_PATH` limits.
///
/// This path may or may not have a verbatim prefix.
pub(crate) fn maybe_verbatim(path: &Path) -> io::Result<Vec<u16>> {
let path = to_u16s(path)?;
get_long_path(path, true)
}
/// Get a normalized absolute path that can bypass path length limits.
///
/// Setting prefer_verbatim to true suggests a stronger preference for verbatim
/// paths even when not strictly necessary. This allows the Windows API to avoid
/// repeating our work. However, if the path may be given back to users or
/// passed to other application then it's preferable to use non-verbatim paths
/// when possible. Non-verbatim paths are better understood by users and handled
/// by more software.
pub(crate) fn get_long_path(mut path: Vec<u16>, prefer_verbatim: bool) -> io::Result<Vec<u16>> {
// Normally the MAX_PATH is 260 UTF-16 code units (including the NULL).
// However, for APIs such as CreateDirectory[1], the limit is 248.
//
// [1]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createdirectorya#parameters
const LEGACY_MAX_PATH: usize = 248;
// UTF-16 encoded code points, used in parsing and building UTF-16 paths.
// All of these are in the ASCII range so they can be cast directly to `u16`.
const SEP: u16 = b'\\' as _;
const ALT_SEP: u16 = b'/' as _;
const QUERY: u16 = b'?' as _;
const COLON: u16 = b':' as _;
const DOT: u16 = b'.' as _;
const U: u16 = b'U' as _;
const N: u16 = b'N' as _;
const C: u16 = b'C' as _;
// \\?\
const VERBATIM_PREFIX: &[u16] = &[SEP, SEP, QUERY, SEP];
// \??\
const NT_PREFIX: &[u16] = &[SEP, QUERY, QUERY, SEP];
// \\?\UNC\
const UNC_PREFIX: &[u16] = &[SEP, SEP, QUERY, SEP, U, N, C, SEP];
if path.starts_with(VERBATIM_PREFIX) || path.starts_with(NT_PREFIX) || path == &[0] {
// Early return for paths that are already verbatim or empty.
return Ok(path);
} else if path.len() < LEGACY_MAX_PATH {
// Early return if an absolute path is less < 260 UTF-16 code units.
// This is an optimization to avoid calling `GetFullPathNameW` unnecessarily.
match path.as_slice() {
// Starts with `D:`, `D:\`, `D:/`, etc.
// Does not match if the path starts with a `\` or `/`.
[drive, COLON, 0] | [drive, COLON, SEP | ALT_SEP, ..]
if *drive != SEP && *drive != ALT_SEP =>
{
return Ok(path);
}
// Starts with `\\`, `//`, etc
[SEP | ALT_SEP, SEP | ALT_SEP, ..] => return Ok(path),
_ => {}
}
}
// Firstly, get the absolute path using `GetFullPathNameW`.
// https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfullpathnamew
let lpfilename = path.as_ptr();
fill_utf16_buf(
// SAFETY: `fill_utf16_buf` ensures the `buffer` and `size` are valid.
// `lpfilename` is a pointer to a null terminated string that is not
// invalidated until after `GetFullPathNameW` returns successfully.
|buffer, size| unsafe { c::GetFullPathNameW(lpfilename, size, buffer, ptr::null_mut()) },
|mut absolute| {
path.clear();
// Only prepend the prefix if needed.
if prefer_verbatim || absolute.len() + 1 >= LEGACY_MAX_PATH {
// Secondly, add the verbatim prefix. This is easier here because we know the
// path is now absolute and fully normalized (e.g. `/` has been changed to `\`).
let prefix = match absolute {
// C:\ => \\?\C:\
[_, COLON, SEP, ..] => VERBATIM_PREFIX,
// \\.\ => \\?\
[SEP, SEP, DOT, SEP, ..] => {
absolute = &absolute[4..];
VERBATIM_PREFIX
}
// Leave \\?\ and \??\ as-is.
[SEP, SEP, QUERY, SEP, ..] | [SEP, QUERY, QUERY, SEP, ..] => &[],
// \\ => \\?\UNC\
[SEP, SEP, ..] => {
absolute = &absolute[2..];
UNC_PREFIX
}
// Anything else we leave alone.
_ => &[],
};
path.reserve_exact(prefix.len() + absolute.len() + 1);
path.extend_from_slice(prefix);
} else {
path.reserve_exact(absolute.len() + 1);
}
path.extend_from_slice(absolute);
path.push(0);
},
)?;
Ok(path)
}
/// Make a Windows path absolute.
pub(crate) fn absolute(path: &Path) -> io::Result<PathBuf> {
let path = path.as_os_str();
let prefix = parse_prefix(path);
// Verbatim paths should not be modified.
if prefix.map(|x| x.is_verbatim()).unwrap_or(false) {
// NULs in verbatim paths are rejected for consistency.
if path.as_os_str_bytes().contains(&0) {
return Err(io::const_io_error!(
io::ErrorKind::InvalidInput,
"strings passed to WinAPI cannot contain NULs",
));
}
return Ok(path.to_owned().into());
}
let path = to_u16s(path)?;
let lpfilename = path.as_ptr();
fill_utf16_buf(
// SAFETY: `fill_utf16_buf` ensures the `buffer` and `size` are valid.
// `lpfilename` is a pointer to a null terminated string that is not
// invalidated until after `GetFullPathNameW` returns successfully.
|buffer, size| unsafe { c::GetFullPathNameW(lpfilename, size, buffer, ptr::null_mut()) },
super::os2path,
)
}